Ovarian cancer (OC) is the fifth cancer death cause in women worldwide. The malignant nature of this disease stems from its unique dissemination pattern. Epithelial-to-mesenchymal transition (EMT) has been reported in OC and downregulation of Epithelial cadherin (E-cadherin) is a hallmark of this process. However, findings on the relationship between E-cadherin levels and OC progression, dissemination and aggressiveness are controversial. In this study, the evaluation of E-cadherin expression in an OC tissue microarray revealed its prognostic value to discriminate between advanced- and early-stage tumors, as well as serous tumors from other histologies. Moreover, E-cadherin, Neural cadherin (N-cadherin), cytokeratins and vimentin expression was assessed in TOV-112, SKOV-3, OAW-42 and OV-90 OC cell lines grown in monolayers and under anchorage-independent conditions to mimic ovarian tumor cell dissemination, and results were associated with cell aggressiveness. According to these EMT-related markers, cell lines were classified as mesenchymal (M; TOV-112), intermediate mesenchymal (IM; SKOV-3), intermediate epithelial (IE; OAW-42) and epithelial (E; OV-90). M- and IM-cells depicted the highest migration capacity when grown in monolayers, and aggregates derived from M- and IM-cell lines showed lower cell death, higher adhesion to extracellular matrices and higher invasion capacity than E- and IE-aggregates. The analysis of E-cadherin, N-cadherin, cytokeratin 19 and vimentin mRNA levels in 20 advanced-stage high-grade serous human OC ascites showed an IM phenotype in all cases, characterized by higher proportions of N- to E-cadherin and vimentin to cytokeratin 19. In particular, higher E-cadherin mRNA levels were associated with cancer antigen 125 levels more than 500 U/mL and platinum-free intervals less than 6 months. Altogether, E-cadherin expression levels were found relevant for the assessment of OC progression and aggressiveness.
Progression to hormone‐independent growth leading to endocrine therapy resistance occurs in a high proportion of patients with estrogen receptor alpha (ERα) and progesterone receptors (PR) positive breast cancer. We and others have previously shown that estrogen‐ and progestin‐induced tumor growth requires ERα and PR interaction at their target genes. Here, we show that fibroblast growth factor 2 (FGF2)‐induces cell proliferation and tumor growth through hormone‐independent ERα and PR activation and their interaction at the MYC enhancer and proximal promoter. MYC inhibitors, antiestrogens or antiprogestins reverted FGF2‐induced effects. LC–MS/MS identified 700 canonical proteins recruited to MYC regulatory sequences after FGF2 stimulation, 397 of which required active ERα (ERα‐dependent). We identified ERα‐dependent proteins regulating transcription that, after FGF2 treatment, were recruited to the enhancer as well as proteins involved in transcription initiation that were recruited to the proximal promoter. Also, among the ERα‐dependent and independent proteins detected at both sites, PR isoforms A and B as well as the novel protein product PRBΔ4 were found. PRBΔ4 lacks the hormone‐binding domain and was able to induce reporter gene expression from estrogen‐regulated elements and to increase cell proliferation when cells were stimulated with FGF2 but not by progestins. Analysis of the Cancer Genome Atlas data set revealed that PRBΔ4 expression is associated with worse overall survival in luminal breast cancer patients. This discovery provides a new mechanism by which growth factor signaling can engage nonclassical hormone receptor isoforms such as PRBΔ4, which interacts with growth‐factor activated ERα and PR to stimulate MYC gene expression and hence progression to endocrine resistance.
Purpose: Preclinical data suggest that antiprogestins inhibit the growth of luminal breast carcinomas that express higher levels of progesterone receptor isoform A (PRA) than isoform B (PRB). Thus, we designed a pre-surgical window of opportunity trial to determine the therapeutic effects of mifepristone in patients with breast cancer based on their high PRA/PRB isoform ratio (MIPRA; NCT02651844). Patients and Methods: Twenty patients with luminal breast carcinomas with PRA/PRB>1.5 (determined by western blots), and PR ≥50%, naive from previous treatment, were included for mifepristone treatment (200 mg/day p.o.; 14 days). Core needle biopsies (CNB) and surgical samples were formalin-fixed for immunohistochemical studies, while others were snap-frozen to perform RNA-Seq, proteomics, and/or western blot studies. Plasma mifepristone levels were determined using mass spectrometry. The primary endpoint was the comparison of Ki67 expression pre- and post-treatment. Results: A 49.62% decrease in Ki67 staining was observed in all surgical specimens compared to baseline (p=0.0003). Using the prespecified response parameter (30% relative reduction), we identified 14/20 responders. Mifepristone induced an increase in tumor-infiltrating lymphocytes, a decrease in hormone receptor and pSer118ER expression, and an increase in calregulin, p21, p15, and activated caspase3 expression. RNA-Seq and proteomics studies identified downregulated pathways related to cell proliferation and upregulated pathways related to immune bioprocesses and extracellular matrix remodeling. Conclusions: Our results support the use of mifepristone in patients with luminal breast cancer with high PRA/PRB ratios. The combined effects of mifepristone and estrogen receptor modulators warrant clinical evaluation to improve endocrine treatment responsiveness in these patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.