Objective: It is well-known that the hippocampus presents significant asymmetry in Alzheimer's disease (AD) and that difference in volumes between left and right exists and varies with disease progression. However, few works investigated whether the asymmetry degree of subfields of hippocampus changes through the continuum from Mild Cognitive Impairment (MCI) to AD. Thus, aim of the present work was to evaluate the Asymmetry Index (AI) of hippocampal substructures as possible MRI biomarkers of Dementia. Moreover, we aimed to assess whether the subfields presented peculiar differences between left and right hemispheres. We also investigated the relationship between the asymmetry magnitude in hippocampal subfields and the decline of verbal memory as assessed by Rey's auditory verbal learning test (RAVLT).Methods: Four-hundred subjects were selected from ADNI, equally divided into healthy controls (HC), AD, stable MCI (sMCI), and progressive MCI (pMCI). The structural baseline T1s were processed with FreeSurfer 6.0 and volumes of whole hippocampus (WH) and 12 subfields were extracted. The AI was calculated as: (|Left-Right|/(Left+Right))*100. ANCOVA was used for evaluating AI differences between diagnoses, while paired t-test was applied for assessing changes between left and right volumes, separately for each group. Partial correlation was performed for exploring relationship between RAVLT summary scores (Immediate, Learning, Forgetting, Percent Forgetting) and hippocampal substructures AI. The statistical threshold was Bonferroni corrected p < 0.05/13 = 0.0038.Results: We found a general trend of increased degree of asymmetry with increasing severity of diagnosis. Indeed, AD presented the higher magnitude of asymmetry compared with HC, sMCI and pMCI, in the WH (AI mean 5.13 ± 4.29 SD) and in each of its twelve subfields. Moreover, we found in AD a significant negative correlation (r = −0.33, p = 0.00065) between the AI of parasubiculum (mean 12.70 ± 9.59 SD) and the RAVLT Learning score (mean 1.70 ± 1.62 SD).Conclusions: Our findings showed that hippocampal subfields AI varies differently among the four groups HC, sMCI, pMCI, and AD. Moreover, we found—for the first time—that hippocampal substructures had different sub-patterns of lateralization compared with the whole hippocampus. Importantly, the severity in learning rate was correlated with pathological high degree of asymmetry in parasubiculum of AD patients.
Major depression is a high-prevalence mental disease with major socio-economic impact, for both the direct and the indirect costs. Major depression symptoms can be faked or exaggerated in order to obtain economic compensation from insurance companies. Critically, depression is potentially easily malingered, as the symptoms that characterize this psychiatric disorder are not difficult to emulate. Although some tools to assess malingering of psychiatric conditions are already available, they are principally based on self-reporting and are thus easily faked. In this paper, we propose a new method to automatically detect the simulation of depression, which is based on the analysis of mouse movements while the patient is engaged in a double-choice computerized task, responding to simple and complex questions about depressive symptoms. This tool clearly has a key advantage over the other tools: the kinematic movement is not consciously controllable by the subjects, and thus it is almost impossible to deceive. Two groups of subjects were recruited for the study. The first one, which was used to train different machine-learning algorithms, comprises 60 subjects (20 depressed patients and 40 healthy volunteers); the second one, which was used to test the machine-learning models, comprises 27 subjects (9 depressed patients and 18 healthy volunteers). In both groups, the healthy volunteers were randomly assigned to the liars and truth-tellers group. Machine-learning models were trained on mouse dynamics features, which were collected during the subject response, and on the number of symptoms reported by participants. Statistical results demonstrated that individuals that malingered depression reported a higher number of depressive and non-depressive symptoms than depressed participants, whereas individuals suffering from depression took more time to perform the mouse-based tasks compared to both truth-tellers and liars. Machine-learning models reached a classification accuracy up to 96% in distinguishing liars from depressed patients and truth-tellers. Despite this, the data are not conclusive, as the accuracy of the algorithm has not been compared with the accuracy of the clinicians; this study presents a possible useful method that is worth further investigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.