This paper discusses the advantages and disadvantages of the different methods that separate net ecosystem exchange (NEE) into its major components, gross ecosystem carbon uptake (GEP) and ecosystem respiration (R-eco). In particular, we analyse the effect of the extrapolation of night-time values of ecosystem respiration into the daytime; this is usually done with a temperature response function that is derived from long-term data sets. For this analysis, we used 16 one-year-long data sets of carbon dioxide exchange measurements from European and US-American eddy covariance networks. These sites span from the boreal to Mediterranean climates, and include deciduous and evergreen forest, scrubland and crop ecosystems. long-term (annual) data sets, does not reflect the short-term temperature sensitivity that is effective when extrapolating from night- to daytime. Specifically, in summer active ecosystems the long-term temperature sensitivity exceeds the short-term sensitivity. Thus, in those ecosystems, the application of a long-term temperature sensitivity to the extrapolation of respiration from night to day leads to a systematic overestimation of ecosystem respiration from half-hourly to annual time-scales, which can reach > 25% for an annual budget and which consequently affects estimates of GEP. Conversely, in summer passive (Mediterranean) ecosystems, the long-term temperature sensitivity is lower than the short-term temperature sensitivity resulting in underestimation of annual sums of respiration. temperature sensitivity of R-eco from eddy covariance data that applies this to the extrapolation from night- to daytime, and that further performs a filling of data gaps that exploits both, the covariance between fluxes and meteorological drivers and the temporal structure of the fluxes. While this algorithm should give less biased estimates of GEP and R-eco, we discuss the remaining biases and recommend that eddy covariance measurements are still backed by ancillary flux measurements that can reduce the uncertainties inherent in the eddy covariance data. [References: 53
Future climate warming is expected to enhance plant growth in temperate ecosystems and to increase carbon sequestration. But although severe regional heatwaves may become more frequent in a changing climate, their impact on terrestrial carbon cycling is unclear. Here we report measurements of ecosystem carbon dioxide fluxes, remotely sensed radiation absorbed by plants, and country-level crop yields taken during the European heatwave in 2003. We use a terrestrial biosphere simulation model to assess continental-scale changes in primary productivity during 2003, and their consequences for the net carbon balance. We estimate a 30 per cent reduction in gross primary productivity over Europe, which resulted in a strong anomalous net source of carbon dioxide (0.5 Pg C yr(-1)) to the atmosphere and reversed the effect of four years of net ecosystem carbon sequestration. Our results suggest that productivity reduction in eastern and western Europe can be explained by rainfall deficit and extreme summer heat, respectively. We also find that ecosystem respiration decreased together with gross primary productivity, rather than accelerating with the temperature rise. Model results, corroborated by historical records of crop yields, suggest that such a reduction in Europe's primary productivity is unprecedented during the last century. An increase in future drought events could turn temperate ecosystems into carbon sources, contributing to positive carbon-climate feedbacks already anticipated in the tropics and at high latitudes.
The European CARBOEUROPE/FLUXNET monitoring sites, spatial remote sensing observations via the EOS-MODIS sensor and ecosystem modelling provide independent and complementary views on the effect of the 2003 heatwave on the European biosphere's productivity and carbon balance. In our analysis, these data streams consistently demonstrate a strong negative anomaly of the primary productivity during the summer of 2003. FLUXNET eddy-covariance data indicate that the drop in productivity was not primarily caused by high temperatures ('heat stress') but rather by limitation of water (drought stress) and that, contrary to the classical expectation about a heat wave, not only gross primary productivity but also ecosystem respiration declined by up to more than to 80 gC m(-2) month(-1). Anomalies of carbon and water fluxes were strongly correlated. While there are large between-site differences in water-use efficiency (WUE, 1-6 kg C kg(-1) H2O) here defined as gross carbon uptake divided by evapotranspiration (WUE=GPP/ET), the year-to-year changes in WUE were small (< 1 g kg(-1)) and quite similar for most sites (i.e. WUE decreased during the year of the heatwave). Remote sensing data from MODIS and AVHRR both indicate a strong negative anomaly of the fraction of absorbed photosynthetically active radiation in summer 2003, at more than five standard deviations of the previous years. The spatial differentiation of this anomaly follows climatic and land-use patterns: Largest anomalies occur in the centre of the meteorological anomaly (central Western Europe) and in areas dominated by crops or grassland. A preliminary model intercomparison along a gradient from data-oriented models to process-oriented models indicates that all approaches are similarly describing the spatial pattern of ecosystem sensitivity to the climatic 2003 event with major exceptions in the Alps and parts of Eastern Europe, but differed with respect to their interannual variability. [References: 46
We refine the information available through the IPCC AR5 with regard to recent trends in global GHG emissions from agriculture, forestry and other land uses (AFOLU), including global emission updates to 2012. Using all three available AFOLU datasets employed for analysis in the IPCC AR5, rather than just one as done in the IPCC AR5 WGIII Summary for Policy Makers, our analyses point to a down-revision of global AFOLU shares of total anthropogenic emissions, while providing important additional information on subsectoral trends. Our findings confirm that the share of AFOLU emissions to the anthropogenic total declined over time. They indicate a decadal average of 28.7 ± 1.5% in the 1990s and 23.6 ± 2.1% in the 2000s and an annual value of 21.2 ± 1.5% in 2010. The IPCC AR5 had indicated a 24% share in 2010. In contrast to previous decades, when emissions from land use (land use, land use change and forestry, including deforestation) were significantly larger than those from agriculture (crop and livestock production), in 2010 agriculture was the larger component, contributing 11.2 ± 0.4% of total GHG emissions, compared to 10.0 ± 1.2% of the land use sector. Deforestation was responsible for only 8% of total anthropogenic emissions in 2010, compared to 12% in the 1990s. Since 2010, the last year assessed by the IPCC AR5, new FAO estimates indicate that land use emissions have remained stable, at about 4.8 Gt CO eq yr in 2012. Emissions minus removals have also remained stable, at 3.2 Gt CO eq yr in 2012. By contrast, agriculture emissions have continued to grow, at roughly 1% annually, and remained larger than the land use sector, reaching 5.4 Gt CO eq yr in 2012. These results are useful to further inform the current climate policy debate on land use, suggesting that more efforts and resources should be directed to further explore options for mitigation in agriculture, much in line with the large efforts devoted to REDD+ in the past decade.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.