Decreased plasma levels of microRNA-223 (miR-223), predominantly of platelet origin, were proposed as a surrogate marker of efficacy of antiplatelet therapy. However, higher on-treatment platelet reactivity was associated with lower plasma miR-223 in patients with coronary artery disease (CAD) on dual antiplatelet therapy (DAPT) including clopidogrel and aspirin. Our aim was to compare plasma miR-223 and platelet reactivity in CAD patients on DAPT with newer P2Y12 antagonists vs. clopidogrel. We studied 21 men with CAD admitted to our centre owing to a non-ST-elevation acute coronary syndrome, and with an uncomplicated hospital course. From the day of admission, the patients were receiving either clopidogrel (n = 11) or prasugrel/ticagrelor (n = 10) in addition to aspirin. Before discharge, miR-223 expression in plasma was estimated by quantitative polymerase chain reaction using the comparative Ct method relative to miR-16 as an endogenous control. Multiple electrode aggregometry was used to assess platelet aggregation in response to adenosine diphosphate (ADP). ADP-induced platelet reactivity was decreased in the patients treated with prasugrel or ticagrelor compared with those on clopidogrel (mean ± SD: 139 ± 71 vs. 313 ± 162 arbitrary units [AU]*min, p = 0.006), due to a more potent antiplatelet activity of the novel P2Y12 antagonists. Consequently, six out of seven patients in the lower tertile of the ADP-induced platelet aggregation were treated with the newer P2Y12 blockers, whereas six out of seven patients in the upper tertile were on clopidogrel. Plasma miR-223 was elevated with decreasing platelet reactivity (Spearman's rho = -0.52; p = 0.015 for trend), being significantly higher in the lower tertile of the ADP-induced platelet aggregation (median [range]: 1.06 [0.25-2.31]) vs. the upper tertile (0.20 [0.13-2.30]) (p = 0.04). In conclusion, our preliminary results argue against the notion of low plasma miR-223 as a marker of platelet responsiveness to DAPT. On the contrary, more potent platelet inhibition associated mainly with newer P2Y12 antagonists appears to coincide with higher miR-223 relative to the subjects with attenuated responsiveness to DAPT.
It is unknown whether fibrosis‐associated microRNAs: miR‐21, miR‐26, miR‐29, miR‐30 and miR‐133a are linked to cardiovascular (CV) outcome. The study evaluated the levels of extracellular matrix (ECM) fibrosis and the prevalence of particular microRNAs in patients with dilated cardiomyopathy (DCM) to investigate any correlation with CV events. Methods: Seventy DCM patients (48 ± 12 years, EF 24.4 ± 7.4%) underwent right ventricular biopsy. The control group was comprised of 7 patients with CAD who underwent CABG and intraoperative biopsy. MicroRNAs were measured in blood and myocardial tissue via qPCR. The end‐point was a combination of CV death and urgent HF hospitalization at the end of 12 months. There were differential levels of circulating and myocardial miR‐26 and miR‐29 as well as myocardial miR‐133a when the DCM and CABG groups were compared. Corresponding circulating and myocardial microRNAs did not correlate with one another. There was no correlation between microRNA and ECM fibrosis. By the end of the 12‐month period of the study, CV death had occurred in 6 patients, and a further 19 patients required urgent HF hospitalization. None of the circulating microRNAs was a predictor of the combined end‐point; however, myocardial miR‐133a was an independent predictor in unadjusted models (HR 1.53; 95% CI 1.14‐2.05; P < .004) and adjusted models (HR 1.57; 95% CI 1.14‐2.17; P < .005). The best cut‐off value for the miR‐133a level for the prediction of the combined end‐point was 0.74 ΔCq, with an AUC of 0.67. The absence of a correlation between the corresponding circulating and myocardial microRNAs calls into question their cellular source. This study sheds new light on the role of microRNAs in ECM fibrosis in DCM, which warrants further exploration.
Background The use of doxorubicin is associated with an increased risk of acute and long-term cardiomyopathy. Despite the constantly growing number of cancer survivors, little is known about the transcriptional mechanisms which progress in the time leading to a severe cardiac outcome. It is also unclear whether long-term transcriptomic alterations related to doxorubicin use are similar to transcriptomic patterns present in patients suffering from other cardiomyopathies. Methods We have sequenced miRNA from total plasma and extracellular vesicles (EVs) from 66 acute lymphoblastic leukemia (ALL) survivors and 61 healthy controls (254 samples in total). We then analyzed processes regulated by differentially expressed circulating miRNAs and cross-validated results with the data of patients with clinically manifested cardiomyopathies. Results We found that especially miRNAs contained within EVs may be informative in terms of cardiomyopathy development and may regulate pathways related to neurotrophin signaling, transforming growth factor beta (TGFβ) or epidermal growth factor receptors (ErbB). We identified vesicular miR-144-3p and miR-423-3p as the most variable between groups and significantly correlated with echocardiographic parameters and, respectively, for plasma: let-7g-5p and miR-16-2-3p. Moreover, vesicular miR-144-3p correlates with the highest number of echocardiographic parameters and is differentially expressed in the circulation of patients with dilated cardiomyopathy. We also found that distribution of particular miRNAs between of plasma and EVs (proportion between compartments) e.g., miR-184 in ALL, is altered, suggesting changes within secretory and miRNA sorting mechanisms. Conclusions Our results show that transcriptomic changes resulting from doxorubicin induced myocardial injury are reflected in circulating miRNA levels and precede development of the late onset cardiomyopathy phenotype. Among miRNAs related to cardiac function, we found vesicular miR-144-3p and miR-423-3p, as well as let-7g-5p and miR-16-2-3p contained in the total plasma. Selection of source for such studies (plasma or EVs) is of critical importance, as distribution of some miRNA between plasma and EVs is altered in ALL survivors, in comparison to healthy people, which suggests that doxorubicin-induced changes include miRNA sorting and export to extracellular space.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.