BackgroundSarcomas exhibit low expression of factors related to immune response, which could explain the modest activity of PD-1 inhibitors. A potential strategy to convert a cold into an inflamed microenvironment lies on a combination therapy. As tumor angiogenesis promotes immunosuppression, we designed a phase Ib/II trial to test the double inhibition of angiogenesis (sunitinib) and PD-1/PD-L1 axis (nivolumab).MethodsThis single-arm, phase Ib/II trial enrolled adult patients with selected subtypes of sarcoma. Phase Ib established two dose levels: level 0 with sunitinib 37.5 mg daily from day 1, plus nivolumab 3 mg/kg intravenously on day 15, and then every 2 weeks; and level −1 with sunitinib 37.5 mg on the first 14 days (induction) and then 25 mg per day plus nivolumab on the same schedule. The primary endpoint was to determine the recommended dose for phase II (phase I) and the 6-month progression-free survival rate, according to Response Evaluation Criteria in Solid Tumors 1.1 (phase II).ResultsFrom May 2017 to April 2019, 68 patients were enrolled: 16 in phase Ib and 52 in phase II. The recommended dose of sunitinib for phase II was 37.5 mg as induction and then 25 mg in combination with nivolumab. After a median follow-up of 17 months (4–26), the 6-month progression-free survival rate was 48% (95% CI 41% to 55%). The most common grade 3–4 adverse events included transaminitis (17.3%) and neutropenia (11.5%).ConclusionsSunitinib plus nivolumab is an active scheme with manageable toxicity in the treatment of selected patients with advanced soft tissue sarcoma, with almost half of patients free of progression at 6 months.Trial registration numberNCT03277924.
The frequency of CRN among SGG infected patients is significantly increased compared with symptomatic age-matched controls, indicating that SGG infection is a strong indicator for underlying occult malignancy.
We recently reported the rapid expansion of an HIV-1 subtype F cluster among men who have sex with men (MSM) in the region of Galicia, Northwest Spain. Here we update this outbreak, analyze near full-length genomes, determine phylogenetic relationships, and estimate its origin. For this study, we used sequences of HIV-1 protease-reverse transcriptase and env V3 region, and for 17 samples, near full-length genome sequences were obtained. Phylogenetic analyses were performed via maximum likelihood. Locations and times of most recent common ancestors were estimated using Bayesian inference. Among samples analyzed by us, 100 HIV-1 F1 subsubtype infections of monophyletic origin were diagnosed in Spain, including 88 in Galicia and 12 in four other regions. Most viruses (n = 90) grouped in a subcluster (Galician subcluster), while 7 from Valladolid (Central Spain) grouped in another subcluster. At least 94 individuals were sexually-infected males and at least 71 were MSM. Seventeen near full-length genomes were uniformly of F1 subsubtype. Through similarity searches and phylogenetic analyses, we identified 18 viruses from four other Western European countries [Switzerland (n = 8), Belgium (n = 5), France (n = 3), and United Kingdom (n = 2)] and one from Brazil, from samples collected in 2005–2011, which branched within the subtype F cluster, outside of both Spanish subclusters, most of them corresponding to recently infected individuals. The most probable geographic origin and age of the Galician subcluster was Ferrol, Northwest Galicia, around 2007, while the Western European cluster probably emerged in Switzerland around 2002. In conclusion, a recently expanded HIV-1 subtype F cluster, the largest non-subtype B cluster reported in Western Europe, continues to spread among MSM in Spain; this cluster is part of a larger cluster with a wide geographic circulation in diverse Western European countries.
Background Severe coronavirus disease-2019 (COVID-19) can progress to an acute respiratory distress syndrome (ARDS), which involves alveolar infiltration by activated neutrophils. The beta-blocker metoprolol has been shown to ameliorate exacerbated inflammation in the myocardial infarction setting. Objectives The purpose of this study was to evaluate the effects of metoprolol on alveolar inflammation and on respiratory function in patients with COVID-19–associated ARDS. Methods A total of 20 COVID-19 patients with ARDS on invasive mechanical ventilation were randomized to metoprolol (15 mg daily for 3 days) or control (no treatment). All patients underwent bronchoalveolar lavage (BAL) before and after metoprolol/control. The safety of metoprolol administration was evaluated by invasive hemodynamic and electrocardiogram monitoring and echocardiography. Results Metoprolol administration was without side effects. At baseline, neutrophil content in BAL did not differ between groups. Conversely, patients randomized to metoprolol had significantly fewer neutrophils in BAL on day 4 (median: 14.3 neutrophils/µl [Q1, Q3: 4.63, 265 neutrophils/µl] vs median: 397 neutrophils/µl [Q1, Q3: 222, 1,346 neutrophils/µl] in the metoprolol and control groups, respectively; P = 0.016). Metoprolol also reduced neutrophil extracellular traps content and other markers of lung inflammation. Oxygenation (PaO 2 :FiO 2 ) significantly improved after 3 days of metoprolol treatment (median: 130 [Q1, Q3: 110, 162] vs median: 267 [Q1, Q3: 199, 298] at baseline and day 4, respectively; P = 0.003), whereas it remained unchanged in control subjects. Metoprolol-treated patients spent fewer days on invasive mechanical ventilation than those in the control group (15.5 ± 7.6 vs 21.9 ± 12.6 days; P = 0.17). Conclusions In this pilot trial, intravenous metoprolol administration to patients with COVID-19–associated ARDS was safe, reduced exacerbated lung inflammation, and improved oxygenation. Repurposing metoprolol for COVID-19–associated ARDS appears to be a safe and inexpensive strategy that can alleviate the burden of the COVID-19 pandemic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.