A missense C1858T single nucleotide polymorphism in the PTPN22 gene recently emerged as a major risk factor for human autoimmunity. PTPN22 encodes the lymphoid tyrosine phosphatase (LYP), which forms a complex with the kinase Csk and is a critical negative regulator of signaling through the T cell receptor. The C1858T single nucleotide polymorphism results in the LYP-R620W variation within the LYP-Csk interaction motif. LYP-W620 exhibits a greatly reduced interaction with Csk and is a gain-of-function inhibitor of signaling. Here we show that LYP constitutively interacts with its substrate Lck in a Csk-dependent manner. T cell receptor-induced phosphorylation of LYP by Lck on an inhibitory tyrosine residue releases tonic inhibition of signaling by LYP. The R620W variation disrupts the interaction between Lck and LYP, leading to reduced phosphorylation of LYP, which ultimately contributes to gainof-function inhibition of T cell signaling.
These findings indicate that ACTH resistance resulting from a defective ACTH receptor may be associated with abnormalities of cartilage and/or bone growth independently of the GH-IGF-I axis, but probably dependent on ACTH actions through other melanocortin receptors.
IGFBP-3 measurement had poor sensitivity in detecting growth hormone deficient patients, offering no diagnostic advantage over IGF-I, even in the first years of life, although, due to the high specificity, the finding of subnormal levels of IGFBP-3 was strongly suggestive of growth hormone deficiency. The presence of low IGFBP-3 and IGF-I levels in a short child with normal GH response to provocative tests should prompt further investigations, such as the determination of spontaneous GH secretion or assessment of the GH binding proteins together with an IGF-I and/or IGFBP-3 generation test, in order to identify neurosecretory dysfunction or GH receptor deficiency. Finally, we believe that there is no definitive test for diagnosing or excluding growth hormone deficiency and detailed analysis of the results of endocrine tests, clinical findings and other laboratory and radiological information is necessary to maximize diagnostic accuracy.
Mycobacterium avium subspecies paratuberculosis (MAP) has been previously associated to T1D as a putative environmental agent triggering or accelerating the disease in Sardinian and Italian populations. Our aim was to investigate the role of MAP in T1D development by evaluating levels of antibodies directed against MAP epitopes and their human homologs corresponding to ZnT8 and proinsulin (PI) in 54 T1D at-risk children from mainland Italy and 42 healthy controls (HCs). A higher prevalence was detected for MAP/ZnT8 pairs (62,96% T1D vs. 7,14% HCs; p < 0.0001) compared to MAP/PI epitopes (22,22% T1D vs. 9,52% HCs) and decreasing trends were observed upon time-point analyses for most peptides. Similarly, classical ZnT8 Abs and GADA decreased in a time-dependent manner, whereas IAA titers increased by 12%. Responses in 0–9 year-old children were stronger than in 10–18 age group (75% vs. 69,1%; p < 0.04). Younger age, female sex and concomitant autoimmune disorders contributed to a stronger seroreactivity suggesting a possible implication of MAP in multiple autoimmune syndrome. Cross-reactivity of the homologous epitopes was reflected by a high correlation coefficient (r2 > 0.8) and a pairwise overlap of positivity (>83% for MAP/ZnT8).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.