The International Society of Urological Pathology 2012 Consensus Conference made recommendations regarding classification, prognostic factors, staging, and immunohistochemical and molecular assessment of adult renal tumors. Issues relating to prognostic factors were coordinated by a workgroup who identified tumor morphotype, sarcomatoid/rhabdoid differentiation, tumor necrosis, grading, and microvascular invasion as potential prognostic parameters. There was consensus that the main morphotypes of renal cell carcinoma (RCC) were of prognostic significance, that subtyping of papillary RCC (types 1 and 2) provided additional prognostic information, and that clear cell tubulopapillary RCC was associated with a more favorable outcome. For tumors showing sarcomatoid or rhabdoid differentiation, there was consensus that a minimum proportion of tumor was not required for diagnostic purposes. It was also agreed upon that the underlying subtype of carcinoma should be reported. For sarcomatoid carcinoma, it was further agreed upon that if the underlying carcinoma subtype was absent the tumor should be classified as a grade 4 unclassified carcinoma with a sarcomatoid component. Tumor necrosis was considered to have prognostic significance, with assessment based on macroscopic and microscopic examination of the tumor. It was recommended that for clear cell RCC the amount of necrosis should be quantified. There was consensus that nucleolar prominence defined grades 1 to 3 of clear cell and papillary RCCs, whereas extreme nuclear pleomorphism or sarcomatoid and/or rhabdoid differentiation defined grade 4 tumors. It was agreed upon that chromophobe RCC should not be graded. There was consensus that microvascular invasion should not be included as a staging criterion for RCC.
The term monoclonal gammopathy of renal significance (MGRS) was introduced by the International Kidney and Monoclonal Gammopathy Research Group (IKMG) in 2012. The IKMG met in April 2017 to refine the definition of MGRS and to update the diagnostic criteria for MGRS-related diseases. Accordingly , in this Expert Consensus Document, the IKMG redefines MGRS as a clonal proliferative disorder that produces a nephrotoxic monoclonal immunoglobulin and does not meet previously defined haematological criteria for treatment of a specific malignancy. The diagnosis of MGRS-related disease is established by kidney biopsy and immunofluorescence studies to identify the monotypic immunoglobulin deposits (although these deposits are minimal in patients with either C3 glomerulopathy or thrombotic microangiopathy). Accordingly , the IKMG recommends a kidney biopsy in patients suspected of having MGRS to maximize the chance of correct diagnosis. Serum and urine protein electrophoresis and immunofixation, as well as analyses of serum free light chains, should also be performed to identify the monoclonal immunoglobulin, which helps to establish the diagnosis of MGRS and might also be useful for assessing responses to treatment. Finally , bone marrow aspiration and biopsy should be conducted to identify the lymphoproliferative clone. Flow cytometry can be helpful in identifying small clones. Additional genetic tests and fluorescent in situ hybridization studies are helpful for clonal identification and for generating treatment recommendations. Treatment of MGRS was not addressed at the 2017 IKMG meeting; consequently , this Expert Consensus Document does not include any recommendations for the treatment of patients with MGRS.
Polyoma virus tubulo-interstitial nephritis-associated graft dysfunction usually calls for judicious decrease in immunosuppression and monitoring for acute rejection. Development of methods to serially quantify the viral load in individual patients could potentially improve clinical outcome.
Monoclonal gammopathy of renal significance (MGRS) regroups all renal disorders caused by a monoclonal immunoglobulin (MIg) secreted by a nonmalignant B-cell clone. By definition, patients with MGRS do not meet the criteria for overt multiple myeloma/B-cell proliferation, and the hematologic disorder is generally consistent with monoclonal gammopathy of undetermined significance (MGUS). However, MGRS is associated with high morbidity due to the severity of renal and sometimes systemic lesions induced by the MIg. Early recognition is crucial, as suppression of MIg secretion by chemotherapy often improves outcomes. The spectrum of renal diseases in MGRS is wide, including old entities such as AL amyloidosis and newly described lesions, particularly proliferative glomerulonephritis with monoclonal Ig deposits and C3 glomerulopathy with monoclonal gammopathy. Kidney biopsy is indicated in most cases to determine the exact lesion associated with MGRS and evaluate its severity. Diagnosis requires integration of morphologic alterations by light microscopy, immunofluorescence (IF), electron microscopy, and in some cases by IF staining for Ig isotypes, immunoelectron microscopy, and proteomic analysis. Complete hematologic workup with serum and urine protein electrophoresis, immunofixation, and serum-free light-chain assay is required. This review addresses the pathologic and clinical features of MGRS lesions, indications of renal biopsy, and a proposed algorithm for the hematologic workup.
Patients with renal cell cancer (RCC) develop metastatic spread in approximately 33% of cases. The clinical management of patients with metastatic RCC is complicated by the lack of significant efficacy from available therapies. Common sites of metastases include the lung, liver, bone, brain, and adrenal gland, with case reports detailing the capacity of RCC to appear almost anywhere in the body. More than one organ system is often involved in the metastatic process. Metastases may be found at diagnosis or at some interval after nephrectomy. Approximately 20% to 50% of patients will eventually develop metastatic disease after nephrectomy. A shorter interval between nephrectomy and the development of metastases is associated with a poorer prognosis. Patients with metastatic RCC face a dismal prognosis, with a median survival time of only 6 to 12 months and a 2-year survival rate of 10% to 20%. Recent advances in biologic response modifier therapy have brought new hope to a small percentage of patients who respond to this therapy and rekindled interest in cytoreductive nephrectomy as an integral part of the management of these patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.