High-throughput screening (HTS) is widely used in drug discovery. Especially for screens of unbiased libraries, false positives can dominate "hit lists"; their origins are much debated. Here we determine the mechanism of every active hit from a screen of 70,563 unbiased molecules against beta-lactamase using quantitative HTS (qHTS). Of the 1,274 initial inhibitors, 95% were detergent-sensitive and were classified as aggregators. Among the 70 remaining were 25 potent, covalent-acting beta-lactams. Mass spectra, counter-screens, and crystallography identified 12 as promiscuous covalent inhibitors. The remaining 33 were either aggregators or irreproducible. No specific reversible inhibitors were found. We turned to molecular docking to prioritize molecules from the same library for testing at higher concentrations. Of 16 tested, 2 were modest inhibitors. Subsequent X-ray structures corresponded to the docking prediction. Analog synthesis improved affinity to 8 microM. These results suggest that it may be the physical behavior of organic molecules, not their reactivity, that accounts for most screening artifacts. Structure-based methods may prioritize weak-but-novel chemotypes in unbiased library screens.
The undersigned authors note the following: "We wish to bring to your attention an issue regarding our PNAS publication referenced above. Although we cite our earlier PNAS publication (see ref. Figs. 2 and 3 display the UWHBs for Hb β-subunit (pdb.1bz0, chain B) and human cellular prion protein (pdb.1qm0) (12)(13)(14). Within the natural interactive context of the Hb subunit, the UWHBs signal crucial binding regions (24): UWHBs (90, 94), (90, 95) are associated with the β-FG corner involved in the quaternary α1β2 interface; UWHB (5, 9) is adjacent to Glu-6 which in sickle cell anemia mutates to Val-6 and is located at the Val-6-(Phe-85, Leu-88) interface in the deoxyHbS fiber."The following text in the section titled 'Toward a Structural Diagnosis' on page 6449 of our text is similar to the text beginning in the last paragraph on page 2392 in ref. 23:The distribution of proteins according to their average extent of hydrogen bond wrapping and their spatial concentration of structural defects is shown in Fig. 5 (see also ref. 23). The sample of 2,811 PDB proteins is large enough to define a reliable abundance distribution with an inflection point at ρ = 6.20. The integration of the distribution over a ρ-interval gives the fraction of proteins whose ρ lies within that range. Of the 2,811 proteins examined, 2,572 have ρ > 6.20, and none of them is known to yield amyloid aggregation under physiological conditions entailing partial retention of structure. Strikingly, relatively few disease-related amyloidogenic proteins are known in the sparsely populated, underwrapped 3.5 < ρ < 6.20 range, with the cellular prion proteins located at the extreme of the spectrum (3.53 < ρ < 3.72)....The range of H-bond wrapping 3.5 < ρ < 4.6 of 20 sampled PDB membrane proteins has been included in Fig. 5 for comparison. As expected, such proteins do not have the stringent H-bond packing requirements of soluble proteins for their H bonds at the lipid interface. Thus, this comparison becomes suggestive in terms of elucidating the driving factor for aggregation in soluble proteins: Although the UWHB constitutes a structural defect in a soluble protein because of its vulnerability to water attack, it is not a structural defect in a membrane protein. The exposure of the polar amide and carbonyl of the unbound state to a nonpolar phase is thermodynamically unfavorable (22). The virtually identical ρ value for human prion and outer-membrane protein A (Fig. 5) is revealing in this regard.Furthermore, all known amyloidogenic proteins that occur naturally in complexed form have sufficient H-bond wrapping within their respective complexes (ρ value near 6.2). Their amyloidogenic propensity appears only under conditions in which the protein is dissociated from the complex (compare Fig. 5). This finding is corroborated by the following computation. If an intramolecular hydrogen bond is underwrapped within the isolated protein molecule but located at an interface upon complexation, then to determine its extent of wrapping within the complex, we take ...
The expression of acid ceramidase (AC) – a cysteine amidase that hydrolyses the proapoptotic lipid ceramide – is abnormally high in several human tumors, which is suggestive of a role in chemoresistance. Available AC inhibitors lack, however, the potency and drug-likeness necessary to test this idea. Here we show that the antineoplastic drug carmofur, which is used in the clinic to treat colorectal cancers, is a potent AC inhibitor and that this property is essential to its anti-proliferative effects. Modifications in the chemical scaffold of carmofur yield new AC inhibitors that act synergistically with standard antitumoral drugs to prevent cancer cell proliferation. These findings identify AC as an unexpected target for carmofur, and suggest that this molecule can be used as starting point for the design of novel chemosensitizing agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.