The blood-brain barrier (BBB) is responsible for the homeostasis between the cerebral vasculature and the brain and it has a key role in regulating the influx and efflux of substances, in healthy and diseased states. Stem cell technology offers the opportunity to use human brain-specific cells to establish in vitro BBB models. Here, we describe the establishment of a human BBB model in a two-dimensional monolayer culture, derived from human induced pluripotent stem cells (hiPSCs). This model was characterized by a transendothelial electrical resistance (TEER) higher than 2000 Ω∙cm2 and associated with negligible paracellular transport. The hiPSC-derived BBB model maintained the functionality of major endothelial transporter proteins and receptors. Some proprietary molecules from our central nervous system (CNS) programs were evaluated revealing comparable permeability in the human model and in the model from primary porcine brain endothelial cells (PBECs).
We have designed and synthesized a series of new imidazole-based compounds structurally related to an antiprotozoal agent with nanomolar activity which we identified recently. The new analogues possess micromolar activities against Trypanosoma brucei rhodesiense and Leishmania donovani and nanomolar potency against Plasmodium falciparum. Most of the analogues displayed IC50 within the low nanomolar range against Trypanosoma cruzi, with very high selectivity toward the parasite. Discussion of structure–activity relationships and in vitro biological data for the new compounds are provided against a number of different protozoa. The mechanism of action for the most potent derivatives (5i, 6a–c, and 8b) was assessed by a target-based assay using recombinant T. cruzi CYP51. Bioavailability and efficacy of selected hits were assessed in a T. cruzi mouse model, where 6a and 6b reduced parasitemia in animals >99% following intraperitoneal administration of 25 mg/kg/day dose for 4 consecutive days.
Huntington’s disease (HD) is a neurodegenerative disease caused by polyglutamine expansion in the huntingtin protein. For drug candidates targeting HD, the ability to cross the blood–brain barrier (BBB) and reach the site of action in the central nervous system (CNS) is crucial for achieving pharmacological activity. To assess the permeability of selected compounds across the BBB, we utilized a two-dimensional model composed of primary porcine brain endothelial cells and rat astrocytes. Our objective was to use this in vitro model to rank and prioritize compounds for in vivo pharmacokinetic and brain penetration studies. The model was first characterized using a set of validation markers chosen based on their functional importance at the BBB. It was shown to fulfill the major BBB characteristics, including functional tight junctions, high transendothelial electrical resistance, expression, and activity of influx and efflux transporters. The in vitro permeability of 54 structurally diverse known compounds was determined and shown to have a good correlation with the in situ brain perfusion data in rodents. We used this model to investigate the BBB permeability of a series of new HD compounds from different chemical classes, and we found a good correlation with in vivo brain permeation, demonstrating the usefulness of the in vitro model for optimizing CNS drug properties and for guiding the selection of lead compounds in a drug discovery setting.
The HIV-1 nucleocapsid (NC) protein is a small basic DNA and RNA binding protein that is absolutely necessary for viral replication and thus represents a target of great interest to develop new anti-HIV agents. Moreover, the highly conserved sequence offers the opportunity to escape the drug resistance (DR) that emerged following the highly active antiretroviral therapy (HAART) treatment. On the basis of our previous research, nordihydroguaiaretic acid 1 acts as a NC inhibitor showing moderate antiviral activity and suboptimal drug-like properties due to the presence of the catechol moieties. A bioisosteric catechol replacement approach led us to identify the 5-dihydroxypyrimidine-6-carboxamide substructure as a privileged scaffold of a new class of HIV-1 NC inhibitors. Hit validation efforts led to the identification of optimized analogs, as represented by compound 28, showing improved NC inhibition and antiviral activity as well as good ADME and PK properties.
While blood–brain barrier (BBB) dysfunction has been described in neurological disorders, including Huntington’s disease (HD), it is not known if endothelial cells themselves are functionally compromised when promoting BBB dysfunction. Furthermore, the underlying mechanisms of BBB dysfunction remain elusive given the limitations with mouse models and post mortem tissue to identify primary deficits. We established models of BBB and undertook a transcriptome and functional analysis of human induced pluripotent stem cell (iPSC)-derived brain-like microvascular endothelial cells (iBMEC) from HD patients or unaffected controls. We demonstrated that HD-iBMECs have abnormalities in barrier properties, as well as in specific BBB functions such as receptor-mediated transcytosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.