Dendritic cells (DCs) are considered a very promising arm to activate the immune system in immunotherapeutic strategies against cancer. DCs are the most powerful antigen-presenting cells (APCs), being highly efficient at generating robust immune responses. They are also considered the center of the immune system, since they provide a crucial link between both innate and adaptive immune responses. Thus, DC-based cancer immunotherapy aims to take advantage of these unique characteristics of DCs to better fight cancer. During the last decade, they have been the subject of numerous studies intending to develop immunotherapeutic strategies against cancer through vaccination. For this purpose, it is essential to gain a better insight into DC immunobiology, regulation of innate and adaptive immune systems, and tumor microenvironment, as well as applying the latest advances in science in order to boost their enormous anti-tumor immunotherapeutic potential. In this review, we will hold focus on DC immunobiology (from their origin, location, and special properties and distinct subsets to the innate and adaptive immunity), on the new concept of cancer immunoediting, and on the knowledge given by clinical trials using DC vaccines. Finally, future perspectives for this emerging field are highlighted.
Propolis and its constituent caffeic acid suppress LPS-stimulated pro-inflammatory response by blocking NF-κB and MAPK activation in macrophages, Journal of Ethnopharmacology, http://dx.doi.org/ 10. 1016/j.jep.2013.06.004 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. AbstractEthnopharmacological relevance: Propolis is a bee product with numerous biological and pharmacological properties, such as immunomodulatory and anti-inflammatory activities.It has been used in folk medicine as a healthy drink and in food to improve health and prevent inflammatory diseases. However, little is known about its mechanism of action.Thus, the goal of this study was to verify the antioxidant activity and to explore the antiinflammatory properties of propolis by addressing its intracellular mechanism of action.Caffeic acid was investigated as a possible compound responsible for propolis action. Materials and Methods:The antioxidant properties of propolis and caffeic acid were evaluated by using the 2,2-diphenyl-1-picrylhydrazyl free radical (DPPH) scavenging method. To analyze the anti-inflammatory activity, Raw 264.7 macrophages were treated with different concentrations of propolis or caffeic acid, and nitric oxide (NO) production, a strong pro-inflammatory mediator, was evaluated by the Griess reaction. The concentrations of propolis and caffeic acid that inhibited NO production were evaluated on intracellular signaling pathways triggered during inflammation, namely p38 mitogenactivated protein kinase (MAPK), c-jun NH 2 -terminal kinase (JNK1/2), the transcription nuclear factor (NF)-NB and extracellular signal-regulated kinase (ERK1/2), through Western blot using specific antibodies. A possible effect of propolis on the cytotoxicity of hepatocytes was also evaluated, since this product can be used in human diets.Results: Caffeic acid showed a higher antioxidant activity than propolis extract. Propolis and caffeic acid inhibited NO production in macrophages, at concentrations without cytotoxicity. Furthermore, both propolis and caffeic acid suppressed LPS-induced signaling pathways, namely p38 MAPK, JNK1/2 and NF-NB. ERK1/2 was not affected by propolis extract and caffeic acid. In addition, propolis and caffeic acid did not induce hepatotoxicity at concentrations with strong anti-inflammatory potential. Conclusions:Propolis exerted an antioxidant and anti-inflammatory action and caffeic acid may be involved in its inhibitory effects on NO production and intracellular signaling cascades, suggesting its use as a natural source of safe anti-inflammatory drugs.
The lipidome of the red seaweed Gracilaria sp., cultivated on land-based integrated multitrophic aquaculture (IMTA) system, was assessed for the first time using hydrophilic interaction liquid chromatography-mass spectrometry and tandem mass spectrometry (HILIC–MS and MS/MS). One hundred and forty-seven molecular species were identified in the lipidome of the Gracilaria genus and distributed between the glycolipids classes monogalactosyl diacylglyceride (MGDG), digalactosyl diacylglyceride (DGDG), sulfoquinovosyl monoacylglyceride (SQMG), sulfoquinovosyl diacylglyceride (SQDG), the phospholipids phosphatidylcholine (PC), lyso-PC, phosphatidylglycerol (PG), lyso-PG, phosphatidylinositol (PI), phosphatidylethanolamine (PE), phosphatic acid (PA), inositolphosphoceramide (IPC), and betaine lipids monoacylglyceryl- and diacylglyceryl-N,N,N-trimethyl homoserine (MGTS and DGTS). Antiproliferative and anti-inflammatory effects promoted by lipid extract of Gracilaria sp. were evaluated by monitoring cell viability in human cancer lines and by using murine macrophages, respectively. The lipid extract decreased cell viability of human T-47D breast cancer cells and of 5637 human bladder cancer cells (estimated half-maximal inhibitory concentration (IC50) of 12.2 μg/mL and 12.9 μg/mL, respectively) and inhibited the production of nitric oxide (NO) evoked by the Toll-like receptor 4 agonist lipopolysaccharide (LPS) on the macrophage cell line RAW 264.7 (35% inhibition at a concentration of 100 μg/mL). These findings contribute to increase the ranking in the value-chain of Gracilaria sp. biomass cultivated under controlled conditions on IMTA systems.
Salvia officinalis L. (Lamiaceae) is a Mediterranean species, naturalized in many countries. In Jordan, it is used in traditional medicine as antiseptic, antiscabies, antisyphilitic, and anti-inflammatory, being frequently used against skin diseases. This study aimed the assessment of the antifungal and anti-inflammatory potential of its essential oils, and their cytotoxicity on macrophages and keratinocytes. The oils were investigated by gas chromatography and gas chromatography-mass spectrometry and the antifungal activity was evaluated against yeasts, dermatophyte and Aspergillus strains. Assessment of cell viability was made by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and the in vitro anti-inflammatory potential was evaluated by measuring nitric oxide production using lipopolysaccharide-stimulated mouse macrophages. The main compounds of S. officinalis oils were 1,8-cineole (39.5–50.3%) and camphor (8.8–25.0%). The oils revealed antifungal activity against dermatophyte strains and significantly inhibited NO production stimulated by LPS in macrophages, without affecting cell viability, in concentrations up to 0.64 μL/mL. This is the first report addressing the in vitro anti-inflammatory potential of S. officinalis oil. These findings demonstrated that bioactive concentrations of S. officinalis oils do not affect mammalian macrophages and keratinocytes viability making them suitable to be incorporated in skin care formulations for cosmetic and pharmaceutical purposes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.