To compare single-agent gemtuzumab ozogamicin (GO) with best supportive care (BSC) including hydroxyurea as first-line therapy in older patients with acute myeloid leukemia unsuitable for intensive chemotherapy. Patients and MethodsIn this trial, patients at least 61 years old were centrally randomized (1:1) to receive either a single induction course of GO (6 mg/m 2 on day 1 and 3 mg/m 2 on day 8) or BSC. Patients who did not progress after GO induction could receive up to eight monthly infusions of the immunoconjugate at 2 mg/m 2 . Randomization was stratified by age, WHO performance score, CD33 expression status, and center. The primary end point was overall survival (OS) by intention-to-treat analysis. ResultsA total of 237 patients were randomly assigned (118 to GO and 119 to BSC). The median OS was 4.9 months (95% CI, 4.2 to 6.8 months) in the GO group and 3.6 months (95% CI, 2.6 to 4.2 months) in the BSC group (hazard ratio, 0.69; 95% CI, 0.53 to 0.90; P = .005); the 1-year OS rate was 24.3% with GO and 9.7% with BSC. The OS benefit with GO was consistent across most subgroups, and was especially apparent in patients with high CD33 expression status, in those with favorable/ intermediate cytogenetic risk profile, and in women. Overall, complete remission (CR [complete remission] + CRi [CR with incomplete recovery of peripheral blood counts]) occurred in 30 of 111 (27%) GO recipients. The rates of serious adverse events (AEs) were similar in the two groups, and no excess mortality from AEs was observed with GO. ConclusionFirst-line monotherapy with low-dose GO, as compared with BSC, significantly improved OS in older patients with acute myeloid leukemia who were ineligible for intensive chemotherapy. No unexpected AEs were identified and toxicity was manageable.J Clin Oncol 34.
Therapy-related myelodysplastic syndrome/acute myeloid leukemia (t-MDS/AML) is an increasingly recognized treatment complication in patients treated with radiotherapy or chemotherapy for previous hematologic malignancies or solid tumors. Distinct clinical entities have been described according to the primary treatment, corresponding to defined genetic lesions. Chromosome 7 and/or 5 losses or deletions are typical of alkylating agent-induced AML, while development of t-AML with balanced translocations involving chromosome bands 11q23 and 21q22 has been related to previous therapy with drugs targeting DNA-topoisomerase II. In addition, anti-metabolites, and in particular the immunosuppressant azathioprine, have been shown to induce defective DNA-mismatch repair. This could promote survival of misrepaired cells giving rise to the leukemic clone. Individual predisposing factors, including polymorphisms in detoxification and DNA repair enzymes have been identified. Their combination may significantly increase the risk of t-MDS/AML. Among patients with hematologic malignancies, long-term survivors of Hodgkin's lymphoma are exposed to an increased risk of t-MDS/AML, particularly when receiving MOPP-based, and escalated BEACOPP regimens, and when alkylators are combined with radiotherapy. Patients with Hodgkin's and non-Hodgkin's lymphoma are at highest risk when total body irradiation followed by autologous stem cell transplantation is used as rescue or consolidation therapy. The addition of granulocyte-colony-stimulating factor and radiotherapy plays a significant role in t-AML following treatment of children with acute lymphoblastic leukemia. In non-hematologic malignancies, treatment for breast cancer and germcell tumors has been associated with a 1-5% lifetime risk of both lymphoid as well as myeloid leukemia. In all cases the risk of t-MDS/AML drops sharply by 10 years after treatment.Key words: susceptibility, therapy-related, AML, MDS. Established genetic factors alone explain approximately 5% of all cancers, the remainder can be attributed to environmental carcinogens, tobacco smoke, dietary costituents, pollutants, drugs, radiation, and infectious agents that act in conjunction with both genetic and acquired susceptibility.1 Yet, the role of exogenous factors is not always so evident. Apart from radiotherapy and chemotherapy, which are recognized as the most frequent causes of secondary malignant neoplasms, therapy-related acute myeloid leukemia (t-AML) and myelodysplastic syndromes (t-MDS) account for 10-20% of all cases of AML.2 In the GIMEMA registry, the incidence of AML occurring as a second malignancy was about 5%, but this registry includes only patients in whom treatment is feasible.3 The high incidence of t-AML has been attributed to the increasing use of cytotoxic drugs causing DNA damage, and to the longer survival of many treated patients. Yet, only a minimal proportion of subjects exposed present with a secondary leukemia, indicating that an important role is played by the susceptibility of hemato...
We have recently demonstrated that G‐CSF promotes the generation of human T regulatory (TREG) type 1 cells. In this study, we investigated whether the immunomodulatory effects of G‐CSF might be mediated by DC. CD14+ monocytes were cultured with serum collected after clinical administration of G‐CSF (post‐G), which contained high amounts of IL‐10 and IFN‐α. Similar to incompletely matured DC, monocytes nurtured with post‐G serum acquired a DC‐like morphology, expressed high levels of costimulatory molecules and HLA‐DR, and exhibited diminished IL‐12p70 release and poor allostimulatory capacity. Importantly, post‐G DC‐like cells were insensitive to maturation stimuli. As shown by neutralization studies, IFN‐α and, even more pronounced, IL‐10 contained in post‐G serum inhibited IL‐12p70 release by post‐G DC‐like cells. Furthermore, phenotypic and functional features of post‐G DC‐like cells were replicated by culturing post‐G monocytes with exogenous IL‐10 and IFN‐α. Post‐G DC‐like cells promoted Ag‐specific hyporesponsiveness in naive allogeneic CD4+ T cells and orchestrated a TREG response that was dependent on secreted TGFβ1 and IL‐10. Finally, neutralization of IL‐10 and IFN‐α contained in post‐G serum translated into abrogation of the regulatory features of post‐G DC‐like cells. This novel mechanism of immune regulation effected by G‐CSF might be therapeutically exploited for tolerance induction in autoimmune disorders.
Quantification of circulating DNA by real-time PCR at diagnosis can identify patients with elevated levels that are associated with disease characteristics indicating aggressive disease and poor prognosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.