SummaryTrained innate immunity fosters a sustained favorable response of myeloid cells to a secondary challenge, despite their short lifespan in circulation. We thus hypothesized that trained immunity acts via modulation of hematopoietic stem and progenitor cells (HSPCs). Administration of β-glucan (prototypical trained-immunity-inducing agonist) to mice induced expansion of progenitors of the myeloid lineage, which was associated with elevated signaling by innate immune mediators, such as IL-1β and granulocyte-macrophage colony-stimulating factor (GM-CSF), and with adaptations in glucose metabolism and cholesterol biosynthesis. The trained-immunity-related increase in myelopoiesis resulted in a beneficial response to secondary LPS challenge and protection from chemotherapy-induced myelosuppression in mice. Therefore, modulation of myeloid progenitors in the bone marrow is an integral component of trained immunity, which to date, was considered to involve functional changes of mature myeloid cells in the periphery.
Resolution of inflammation is essential for tissue homeostasis and a promising approach to inflammatory disorders. Here we found that DEL-1, a secreted protein inhibiting leukocyte-endothelial adhesion and inflammation initiation, also functions as a non-redundant downstream effector in inflammation clearance. In human and murine periodontitis, waning of inflammation correlated with DEL-1 upregulation, whereas resolution of experimental periodontitis failed in DEL-1 deficiency. This concept was mechanistically substantiated in acute monosodium urate crystal-induced inflammation, where the pro-resolution function of DEL-1 was attributed to effective apoptotic neutrophil clearance (efferocytosis). DEL-1-mediated efferocytosis induced liver-X-receptor-dependent macrophage reprogramming to pro-resolving phenotype and was required for optimal production of at least certain specific pro-resolving mediators. Experiments in transgenic mice with cell-specific overexpression of DEL-1 linked its anti-leukocyte recruitment action to endothelial-derived DEL-1 and its efferocytic/pro-resolving action to macrophage-derived DEL-1. Thus, the compartmentalized expression of DEL-1 facilitates distinct homeostatic functions in an appropriate context that can be harnessed therapeutically.
es. We show that Del-1, via its interaction with the αvβ3 integrin, promotes several critical functions in the niche, including HSC retention, hematopoietic progenitor cell cycle progression, and myeloid lineage commitment of HSCs. Del-1 thereby regulates myelopoiesis under steady-state conditions and in G-CSF-or inflammation-induced stress myelopoiesis, as well as myelopoiesis reconstitution under regenerative/transplantation conditions. Del-1 is hence a niche component that serves a juxtacrine homeostatic adaptation of the hematopoietic system in inflammation-related and regeneration myelopoiesis. ResultsDel-1 expression in the BM. First, we sought to investigate whether Del-1 is present in the BM. We initially studied the expression of the Del-1-encoding gene Edil3 in the BM niche and hematopoietic cell populations. We found that Edil3 mRNA expression was significantly higher in the endosteal region as compared with the central BM (cBM) ( Figure 1A), suggesting that Del-1 is enriched at the endosteal area of the BM. Analysis of sorted cells from CXCL12-GFP mice (33, 34) demonstrated that Edil3 was highly expressed integrin receptors (29-31). It consists of three N-terminal EGF-like repeats and two C-terminal discoidin I-like domains, and hence also is designated EGF-like repeats and discoidin-I-like domains-3 (EDIL3) (32). We have previously identified Del-1 as an endogenous modulator of leukocyte adhesion through interaction with integrin αLβ2 (LFA-1; CD11a/CD18) (29, 31). Moreover, Del-1 interacts with β3 integrin (CD61) via an Arg-Gly-Asp (RGD) motif on the second EGF-like repeat (30).In the present work, we observed that Del-1 is expressed by several major cellular components of the HSC niche, though not by hematopoietic progenitors. In particular, Del-1 is expressed by those niche cells that have a major role in the maintenance of HSCs, i.e., arteriolar endothelial cells and perivascular CAR cells (3,6,7,9,15). In addition, Del-1 is expressed by cells of the osteoblastic lineage that crucially mediate the engraftment of HSCs in the post-transplantation niche (3,17,18). This spatial distribution of Del-1 raised the possibility that it might be involved in the regulation of hematopoiesis. We addressed this hypothesis using in vivo models of steady-state, regenerative, and stress hematopoiesis and in vitro mechanistic approach-
Dehydroepiandrosterone (DHEA) is the most abundant circulating steroid hormone in humans, produced by the adrenals, the gonads and the brain. DHEA was previously shown to bind to the nerve growth factor receptor, tropomyosin-related kinase A (TrkA), and to thereby exert neuroprotective effects. Here we show that DHEA reduces microglia-mediated inflammation in an acute lipopolysaccharide-induced neuro-inflammation model in mice and in cultured microglia in vitro. DHEA regulates microglial inflammatory responses through phosphorylation of TrkA and subsequent activation of a pathway involving Akt1/Akt2 and cAMP response element-binding protein. The latter induces the expression of the histone 3 lysine 27 (H3K27) demethylase Jumonji d3 (Jmjd3), which thereby controls the expression of inflammation-related genes and microglial polarization. Together, our data indicate that DHEA-activated TrkA signaling is a potent regulator of microglia-mediated inflammation in a Jmjd3-dependent manner, thereby providing the platform for potential future therapeutic interventions in neuro-inflammatory pathologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.