Most outbreaks of Rift Valley fever (RVF) occur in remote locations after fl oods. To determine environmental risk factors and long-term sequelae of human RVF, we examined rates of previous Rift Valley fever virus (RVFV) exposure by age and location during an interepidemic period in 2006. In a randomized household cluster survey in 2 areas of Ijara District, Kenya, we examined 248 residents of 2 sublocations, Gumarey (village) and Sogan-Godud (town). Overall, the RVFV seropositivity rate was 13% according to immunoglobulin G ELISA; evidence of interepidemic RVFV transmission was detected. Increased seropositivity was found among older persons, those who were male, those who lived in the rural village (Gumarey), and those who had disposed of animal abortus. Rural Gumarey reported more mosquito and animal exposure than Sogan-Godud. Seropositive persons were more likely to have visual impairment and retinal lesions; other physical fi ndings did not differ.
Background: Reliable and updated maps of helminth (worm) infection distributions are essential to target control strategies to those populations in greatest need. Although many surveys have been conducted in endemic countries, the data are rarely available in a form that is accessible to policy makers and the managers of public health programmes. This is especially true in sub-Saharan Africa, where empirical data are seldom in the public domain. In an attempt to address the paucity of geographical information on helminth risk, this article describes the development of an updated global atlas of human helminth infection, showing the example of East Africa.
Schistosomiasis is a water-based, infectious disease with high morbidity and significant economic burdens affecting >250 million people globally. Disease control has, with notable success, for decades focused on drug treatment of infected human populations, but a recent paradigm shift now entails moving from control to elimination. To achieve this ambitious goal, more sensitive diagnostic tools are needed to monitor progress toward transmission interruption in the environment, especially in low-intensity infection areas. We report on the development of an environmental DNA (eDNA)-based tool to efficiently detect DNA traces of the parasite Schistosoma mansoni directly in the aquatic environment, where the nonhuman part of the parasite life cycle occurs. This is a report of the successful detection of S. mansoni in freshwater samples by using aquatic eDNA. True eDNA was detected in as few as 10 cercariae per liter of water in laboratory experiments. The field applicability of the method was tested at known transmission sites in Kenya, where comparison of schistosome detection by conventional snail surveys (snail collection and cercariae shedding) with eDNA (water samples) showed 71% agreement between the methods. The eDNA method furthermore detected schistosome presence at two additional sites where snail shedding failed, demonstrating a higher sensitivity of eDNA sampling. We conclude that eDNA provides a promising tool to substantially improve the environmental surveillance of S. mansoni. Given the proper method and guideline development, eDNA could become an essential future component of the schistosomiasis control tool box needed to achieve the goal of elimination.
BackgroundAn increasing number of countries in Africa and elsewhere are developing national plans for the control of neglected tropical diseases. A key component of such plans is school-based deworming (SBD) for the control of soil-transmitted helminths (STHs) and schistosomiasis. Monitoring and evaluation (M&E) of national programmes is essential to ensure they are achieving their stated aims and to evaluate when to reduce the frequency of treatment or when to halt it altogether. The article describes the M&E design of the Kenya national SBD programme and presents results from the baseline survey conducted in early 2012.MethodsThe M&E design involves a stratified series of pre- and post-intervention, repeat cross-sectional surveys in a representative sample of 200 schools (over 20,000 children) across Kenya. Schools were sampled based on previous knowledge of STH endemicity and were proportional to population size. Stool (and where relevant urine) samples were obtained for microscopic examination and in a subset of schools; finger-prick blood samples were collected to estimate haemoglobin concentration. Descriptive and spatial analyses were conducted. The evaluation measured both prevalence and intensity of infection.ResultsOverall, 32.4% of children were infected with at least one STH species, with Ascaris lumbricoides as the most common species detected. The overall prevalence of Schistosoma mansoni was 2.1%, while in the Coast Province the prevalence of S. haematobium was 14.8%. There was marked geographical variation in the prevalence of species infection at school, district and province levels. The prevalence of hookworm infection was highest in Western Province (25.1%), while A. lumbricoides and T. trichiura prevalence was highest in the Rift Valley (27.1% and 11.9%). The lowest prevalence was observed in the Rift Valley for hookworm (3.5%), in the Coast for A. lumbricoides (1.0%), and in Nyanza for T. trichiura (3.6%). The prevalence of S. mansoni was most common in Western Province (4.1%).ConclusionsThe current findings are consistent with the known spatial ecology of STH and schistosome infections and provide an important empirical basis on which to evaluate the impact of regular mass treatment through the school system in Kenya.
ObjectiveTo design and implement surveys of malaria infection and coverage of malaria control interventions among school children in Kenya in order to contribute towards a nationwide assessment of malaria.MethodsThe country was stratified into distinct malaria transmission zones based on a malaria risk map and 480 schools were visited between October 2008 and March 2010. Surveys were conducted in two phases: an initial opportunistic phase whereby schools were selected for other research purposes; and a second phase whereby schools were purposively selected to provide adequate spatial representation across the country. Consent for participation was based on passive, opt-out consent rather than written, opt-in consent because of the routine, low-risk nature of the survey. All children were diagnosed for Plasmodium infection using rapid diagnostic tests, assessed for anaemia and were interviewed about mosquito net usage, recent history of illness, and socio-economic and household indicators. Children's responses were entered electronically in the school and data transmitted nightly to Nairobi using a mobile phone modem connection. RDT positive results were corrected by microscopy and all results were adjusted for clustering using random effect regression modelling.Results49,975 children in 480 schools were sampled, at an estimated cost of US$ 1,116 per school. The overall prevalence of malaria and anaemia was 4.3% and 14.1%, respectively, and 19.0% of children reported using an insecticide-treated net (ITN). The prevalence of infection showed marked variation across the country, with prevalence being highest in Western and Nyanza provinces, and lowest in Central, North Eastern and Eastern provinces. Nationally, 2.3% of schools had reported ITN use >60%, and low reported ITN use was a particular problem in Western and Nyanza provinces. Few schools reported having malaria health education materials or ongoing malaria control activities.ConclusionSchool malaria surveys provide a rapid, cheap and sustainable approach to malaria surveillance which can complement household surveys, and in Kenya, show that large areas of the country do not merit any direct school-based control, but school-based interventions, coupled with strengthened community-based strategies, are warranted in western and coastal Kenya. The results also provide detailed baseline data to inform evaluation of school-based malaria control in Kenya.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.