Investment in SARS-CoV-2 sequencing in Africa over the past year has led to a major increase in the number of sequences generated, now exceeding 100,000 genomes, used to track the pandemic on the continent. Our results show an increase in the number of African countries able to sequence domestically, and highlight that local sequencing enables faster turnaround time and more regular routine surveillance. Despite limitations of low testing proportions, findings from this genomic surveillance study underscore the heterogeneous nature of the pandemic and shed light on the distinct dispersal dynamics of Variants of Concern, particularly Alpha, Beta, Delta, and Omicron, on the continent. Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve, while the continent faces many emerging and re-emerging infectious disease threats. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century.
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a positive-sense single stranded RNA virus with high human transmissibility. This study generated Whole Genome data to determine the origin and pattern of transmission of SARS-CoV-2 from the first six cases tested in The Gambia. Total RNA from SARS-CoV-2 was extracted from inactivated nasopharyngeal-oropharyngeal swabs of six cases and converted to cDNA following the ARTIC COVID-19 sequencing protocol. Libraries were constructed with the NEBNext ultra II DNA library prep kit for Illumina and Oxford Nanopore Ligation sequencing kit and sequenced on Illumina MiSeq and Nanopore GridION, respectively. Sequencing reads were mapped to the Wuhan reference genome and compared to eleven other SARS-CoV-2 strains of Asian, European and American origins. A phylogenetic tree was constructed with the consensus genomes for local and non-African strains. Three of the Gambian strains had a European origin (UK and Spain), two strains were of Asian origin (Japan). In The Gambia, Nanopore and Illumina sequencers were successfully used to identify the sources of SARS-CoV-2 infection in COVID-19 cases.
The SARS-CoV-2 disease, first detected in Wuhan, China, in December 2019 has become a global pandemic and is causing an unprecedented burden on health care systems and the economy globally. While the travel history of index cases may suggest the origin of infection, phylogenetic analysis of isolated strains from these cases and contacts will increase the understanding and link between local transmission and other global populations. The objective of this analysis was to provide genomic data on the first six cases of SARS-CoV-2 in The Gambia and to determine the source of infection. This ultimately provide baseline data for subsequent local transmission and contribute genomic diversity information towards local and global data. Our analysis has shown that the SARS-CoV-2 virus identified in The Gambia are of European and Asian origin and sequenced data matched patients’ travel history. In addition, we were able to show that two COVID-19 positive cases travelling in the same flight had different strains of SARS-CoV-2. Although whole genome sequencing (WGS) data is still limited in sub-Saharan Africa, this approach has proven to be a highly sensitive, specific and confirmatory tool for SARS-CoV-2 detection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.