Both mutant TP53 and MSI-H seem to be prognostic indicators for disease-free survival, but only TP53 retains statistical significance after adjusting for clinical heterogeneity. Thus, in adjuvantly treated patients with stage III colon cancer, presence or absence of a TP53 mutation should be considered as a better predictor for DFS than MSI status.
Duchenne and Becker muscular dystrophy (DMD and BMD) are caused by mutations in the dystrophin gene. Large rearrangements in the gene are found in about two-thirds of DMD patients, with approximately 60% carrying deletions and 5-10% carrying duplications. Most of the remaining 30-35% of patients are expected to have small nucleotide substitutions, insertions, or deletions. To detect these subtle changes within the coding and splice site determining sequences of the dystrophin gene, we established a semiautomated denaturing gradient gel electrophoresis (DGGE) mutation scanning system. The DGGE scan covers the dystrophin gene with 95 amplicons, PCRed either individually or in a multiplex setup. PCR and pooling were performed semiautomatically, using a pipetting robot and 384-well plates, enabling concurrent amplification of DNA of four patients in one run. Amplification of individual fragments was performed using one PCR program. The products were pooled just before gel loading; DGGE requires only a single gel condition. Validation was performed using DNA samples harboring 39 known DMD variants, all of which could be readily detected. DGGE mutation scanning was applied to analyze 135 DMD/BMD patients and potential DMD carriers without large deletions or duplications. In DNA from 25 out of 44 DMD patients (57%) and from 5 out of 39 BMD patients (13%), we identified clear pathogenic changes. All mutations were different, with the exception of one DMD mutation, which occurred twice. In DNA from 10 out of 44 potential DMD carriers, including four obligate carriers, we detected causative changes, including one pathogenic change in every obligate carrier. In addition to these pathogenic changes, we detected 15 unique unclassified variants, i.e., changes for which a pathogenic nature is uncertain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.