Objective
This study was undertaken to assess the impact of immunosuppressive and immunomodulatory therapies on the severity of coronavirus disease 2019 (COVID‐19) in people with multiple sclerosis (PwMS).
Methods
We retrospectively collected data of PwMS with suspected or confirmed COVID‐19. All the patients had complete follow‐up to death or recovery. Severe COVID‐19 was defined by a 3‐level variable: mild disease not requiring hospitalization versus pneumonia or hospitalization versus intensive care unit (ICU) admission or death. We evaluated baseline characteristics and MS therapies associated with severe COVID‐19 by multivariate and propensity score (PS)‐weighted ordinal logistic models. Sensitivity analyses were run to confirm the results.
Results
Of 844 PwMS with suspected (n = 565) or confirmed (n = 279) COVID‐19, 13 (1.54%) died; 11 of them were in a progressive MS phase, and 8 were without any therapy. Thirty‐eight (4.5%) were admitted to an ICU; 99 (11.7%) had radiologically documented pneumonia; 96 (11.4%) were hospitalized.
After adjusting for region, age, sex, progressive MS course, Expanded Disability Status Scale, disease duration, body mass index, comorbidities, and recent methylprednisolone use, therapy with an anti‐CD20 agent (ocrelizumab or rituximab) was significantly associated (odds ratio [OR] = 2.37, 95% confidence interval [CI] = 1.18–4.74, p = 0.015) with increased risk of severe COVID‐19. Recent use (<1 month) of methylprednisolone was also associated with a worse outcome (OR = 5.24, 95% CI = 2.20–12.53, p = 0.001). Results were confirmed by the PS‐weighted analysis and by all the sensitivity analyses.
Interpretation
This study showed an acceptable level of safety of therapies with a broad array of mechanisms of action. However, some specific elements of risk emerged. These will need to be considered while the COVID‐19 pandemic persists. ANN NEUROL 2021;89:780–789
The biodegradation of waters polluted by some bisphenols, endowed with endocrine activity, has been studied by means of laccase or tyrosinase immobilized on polyacrylonitrile (PAN) beads. Bisphenol A (BPA), Bisphenol B (BPB), Bisphenol F (BPF) and Tetrachlorobisphenol A (TCBPA) have been used. The laccase-PAN beads system has been characterized as a function of pH, temperature and substrate concentration. The biochemical parameters so obtained have been compared with those of the free enzyme to evidence the modification induced by the immobilization process. Once characterized, the laccase-PAN beads have been employed in a fluidized bed reactor to determine for each of the four bisphenols the degradation rate constant (k); the τ(50), i.e., the time to obtain the 50% of degradation, and the removal efficiency (RE(90)) after 90 min of enzyme treatment. The same parameters have been measured for each of the four pollutants with the same fluidized bed bioreactor loaded with tyrosinase-PAN beads. The internal comparison, i.e., in each of the two catalytic systems, has shown that both enzymes exhibit a removal efficiency in the following order BPF>BPA>BPB>TCBPA. The external comparison, i.e., the comparison between the two catalytic system, has shown that the catalytic power of laccase were higher than that of tyrosinase. The operational stability of both catalytic systems resulted excellent, since they maintained more than 80% of the initial activity after 30 days of work.
In eyes without ON, VEPs were more frequently abnormal than OCT, while the two techniques showed similar sensitivity in eyes previously affected by ON. The correlation of VEPs and OCT measures with disability prompts further exploration of the two techniques as potential markers of disease burden.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.