The uremic syndrome is a complex mixture of organ dysfunctions, which is attributed to the retention of a myriad of compounds that under normal condition are excreted by the healthy kidneys (uremic toxins). In the area of identification and characterization of uremic toxins and in the knowledge of their pathophysiologic importance, major steps forward have been made during recent years. The present article is a review of several of these steps, especially in the area of information about the compounds that could play a role in the development of cardiovascular complications. It is written by those members of the Uremic Toxins Group, which has been created by the European Society for Artificial Organs (ESAO). Each of the 16 authors has written a state of the art in his/her major area of interest.
Fibroblast growth factor 23 (FGF23) modulates mineral metabolism by promoting phosphaturia and decreasing the production of 1,25-dihydroxyvitamin D 3 . FGF23 decreases parathyroid hormone (PTH) mRNA and secretion, but despite a marked elevation in FGF23 in uremia, PTH production increases. Here, we investigated the effect of FGF23 on parathyroid function in normal and uremic hyperplastic parathyroid glands in rats. In normal parathyroid glands, FGF23 decreased PTH production, increased expression of both the parathyroid calcium-sensing receptor and the vitamin D receptor, and reduced cell proliferation. Furthermore, FGF23 induced phosphorylation of extracellular signal-regulated kinase 1/2, which mediates the action of FGF23. In contrast, in hyperplastic parathyroid glands, FGF23 did not reduce PTH production, did not affect expression of the calcium-sensing receptor or vitamin D receptor, and did not affect cell proliferation. In addition, FGF23 failed to activate the extracellular signalregulated kinase 1/2-mitogen-activated protein kinase pathway in hyperplastic parathyroid glands. We observed very low expression of the FGF23 receptor 1 and the co-receptor Klotho in uremic hyperplastic parathyroid glands, which may explain the lack of response to FGF23 in this tissue. In conclusion, in hyperparathyroidism secondary to renal failure, the parathyroid cells resist the inhibitory effects of FGF23, perhaps as a result of the low expression of FGF23 receptor 1 and Klotho in this condition. 21: 112521: -113521: , 201021: . doi: 10.1681 Fibroblast growth factor 23 (FGF23) is produced by bone cells and plays a fundamental role in the regulation of mineral metabolism. FGF23 inhibits tubular resorption of phosphate and decreases 1␣ hydroxylase activity, which limits 1,25-dihydroxyvitamin D 3 [1,25(OH) 2 D 3 ] production. Both phosphate excess and high 1,25(OH) 2 D 3 stimulate the production of FGF23. 1 FGF23 signals through a widely expressed receptor (FGFR) that becomes functional only in cells expressing the Klotho protein. 2,3 Klotho, which is expressed in the parathyroid cell, converts FGFR1(IIIc), a canonical receptor for various FGFs, into a specific receptor for FGF23. The tissue-specific unique biological activity of FGF23 is likely to be regulated by the limited local distribution of Klotho. In renal failure, the decrease in glomerular filtration causes phosphate retention, which stimulates the production of FGF23. This elevation in FGF23 levels should help to control phosphate in patients with renal failure. 4 J Am Soc Nephrol
Fibroblast growth factor (FGF) 23 inhibits calcitriol production, which could exacerbate calcium deficiency or hypocalcemia unless calcium itself modulates FGF23 in this setting. In Wistar rats with normal renal function fed a diet low in both calcium and vitamin D, the resulting hypocalcemia was associated with low FGF23 despite high parathyroid hormone (PTH) and high calcitriol levels. FGF23 correlated positively with calcium and negatively with PTH. Addition of high dietary phosphorus to this diet increased FGF23 except in rats with hypocalcemia despite high PTH levels. In parathyroidectomized rats, an increase in dietary calcium for 10 days increased serum calcium, with an associated increase in FGF23, decrease in calcitriol, and no change in phosphorus. Also in parathyroidectomized rats, FGF23 increased significantly 6 hours after administration of calcium gluconate. Taken together, these results suggest that hypocalcemia reduces the circulating concentrations of FGF23. This decrease in FGF23 could be a response to avoid a subsequent reduction in calcitriol, which could exacerbate hypocalcemia. 23: 119023: -119723: , 201223: . doi: 10.1681 Fibroblast growth factor (FGF) 23 production is stimulated by both calcitriol and phosphorus intake. FGF23 acts through FGFR-klotho receptors in the kidney to induce phosphaturia, a decrease in 1-a-hydroxylase activity, and an increase in 24-hydroxylase activity. The latter two effects decrease the synthesis and increase the degradation of calcitriol, respectively. 1-4 Parathyroid cells also possess FGFR-klotho receptors, and experimental studies have shown that FGF23 inhibits parathyroid hormone (PTH) production and secretion. [5][6][7] However, in uremic animals, hyperplastic parathyroid glands fail to respond to FGF23 because the expression of FGFR-klotho is downregulated. [7][8][9][10][11] FGF23 effectively increases the output and decreases the input of phosphorus because it directly increases phosphaturia and indirectly decreases intestinal phosphorus absorption by decreasing calcitriol values. However, a conflict will arise if high FGF23 inhibits calcitriol production in a setting of calcium deficiency/hypocalcemia, where high calcitriol is needed to increase intestinal calcium absorption. We have previously observed in parathyroidectomized (PTX) rats with decreased serum J Am Soc Nephrol
Fibroblastic growth factor 23 (FGF23) is a bone-derived hormone that has a pivotal role in the pathogenesis of mineral disorders in chronic kidney disease. To study the effect of parathyroid hormone (PTH) on FGF23, rats were parathyroidectomized for a week and then implanted with constant-delivery infusion pumps to provide vehicle, a physiological, or a threefold supraphysiological dose of parathyroid hormone. Parathyroidectomy resulted in a significant decrease in blood ionized calcium, FGF23, and calcitriol along with an increase in phosphorus concentrations. PTH replacement produced a dose-dependent increase in ionized calcium and FGF23 with decreased phosphorus. Calcitriol was also increased but there was no dose effect of PTH treatment. To maintain normal plasma calcitriol levels, two additional groups of parathyroidectomized rats were given calcitriol and temporarily treated with vehicle or the supraphysiological dose of PTH. FGF23 was significantly increased by calcitriol in the vehicle-treated rats but was not further increased above that in rats given the supraphysiological dose of PTH in the absence of calcitriol. Klotho expression in the kidney decreased after parathyroidectomy but was restored by hormone supplementation. Hence, our results show a direct and an indirect effect of PTH on FGF23 secretion, the latter through changes in calcitriol concentrations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.