Both acute and chronic apelin treatment have been shown to improve insulin sensitivity in mice. However, the effects of apelin on fatty acid oxidation (FAO) during obesity-related insulin resistance have not yet been addressed. Thus, the aim of the current study was to determine the impact of chronic treatment on lipid use, especially in skeletal muscles. High-fat diet (HFD)-induced obese and insulin-resistant mice treated by an apelin injection (0.1 μmol/kg/day i.p.) during 4 weeks had decreased fat mass, glycemia, and plasma levels of triglycerides and were protected from hyperinsulinemia compared with HFD PBS-treated mice. Indirect calorimetry experiments showed that apelin-treated mice had a better use of lipids. The complete FAO, the oxidative capacity, and mitochondrial biogenesis were increased in soleus of apelin-treated mice. The action of apelin was AMP-activated protein kinase (AMPK) dependent since all the effects studied were abrogated in HFD apelin-treated mice with muscle-specific inactive AMPK. Finally, the apelin-stimulated improvement of oxidative capacity led to decreased levels of acylcarnitines and enhanced insulin-stimulated glucose uptake in soleus. Thus, by promoting complete lipid use in muscle of insulin-resistant mice through mitochondrial biogenesis and tighter matching between FAO and the tricarboxylic acid cycle, apelin treatment could contribute to insulin sensitivity improvement.
Recent studies have demonstrated that the rat adipose tissue expresses some of the components necessary for the production of angiotensin II (Ang II) and the receptors mediating its actions. The aim of this work is to characterize the expression of the renin-angiotensin system (RAS) components in perivascular adipose tissue and to assess differences in the expression pattern depending on the vascular bed and type of adipose tissue. We analyzed Ang I and Ang II levels as well as mRNA levels of RAS components by a quantitative RT-PCR method in periaortic (PAT) and mesenteric adipose tissue (MAT) of 3-month-old male Wistar-Kyoto rats. PAT was identified as brown adipose tissue expressing uncoupling protein-1 (UCP-1). It had smaller adipocytes than those from MAT, which was identified as white adipose tissue. All RAS components, except renin, were detected in both PAT and MAT. Levels of expression of angiotensinogen, Ang-converting enzyme (ACE), and ACE2 were similar between PAT and MAT. Renin receptor expression was five times higher, whereas expression of chymase, AT 1a , and AT 2 receptors were significantly lower in PAT compared with MAT respectively. In addition, three isoforms of the AT 1a receptor were found in perivascular adipose tissue. The AT 1b receptor was found at very a low expression level. Ang II levels were higher in MAT with no differences between tissues in Ang I. The results show that the RAS is differentially expressed in white and brown perivascular adipose tissues implicating a different role for the system depending on the vascular bed and the type of adipose tissue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.