Homodimers of noble metal nanocubes form model plasmonic systems where the localized plasmon resonances sustained by each particle not only hybridize but also coexist with excitations of a different nature: surface plasmon polaritons confined within the Fabry-Perot cavity delimited by facing cube surfaces (i.e., gap plasmons). Destructive interference in the strong coupling between one of these highly localized modes and the highly radiating longitudinal dipolar plasmon of the dimer is responsible for the formation of a Fano resonance profile and the opening of a spectral window of anomalous transparency for the exciting light. We report on the clear experimental evidence of this effect in the case of 50 nm silver and 160 nm gold nanocube dimers studied by spatial modulation spectroscopy at the single particle level. A numerical study based on a plasmon mode analysis leads us to unambiguously identify the main cavity mode involved in this process and especially the major role played by its symmetry. The Fano depletion dip is red-shifted when the gap size is decreasing. It is also blue-shifted and all the more pronounced that the cube edge rounding is large. Combining nanopatch antenna and plasmon hybridization descriptions, we quantify the key role of the face-to-face distance and the cube edge morphology on the spectral profile of the transparency dip.
The optical properties of small Cu−Ag bimetallic clusters have been experimentally and theoretically investigated in relation to their chemical structure analyzed by high resolution transmission electron microscopy (HRTEM). Cu(1−x) Ag x clusters of about 5 nm in diameter are produced in a laser vaporization source with a well-defined stoichiometry (x = 0, 25, 50, 75, and 100%) and dispersed in an alumina matrix. Absorption spectra are dominated by a broad and strong surface plasmon resonance whose shape and location are dependent on both cluster composition and sample aging. Detailed modeling and systematic calculations of the optical response of pure and oxidized mixed clusters of various chemical structures have been carried out in the framework of classical and semiquantal formalisms. Optical and HRTEM measurements combined with theoretical predictions lead to the conclusion that these bimetallic clusters are not alloyed at the atomic scale but rather present a segregation of chemical phases. Most likely, they adopt a Cu@Ag core−shell configuration. Moreover, the nanoparticle oxidation process is consistent with the formation of a copper oxide layer by dragging out inner copper atoms to the cluster surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.