While natural photosynthesis serves as the model system for efficient charge separation and decoupling of redox reactions, bio-inspired artificial systems typically lack applicability owing to synthetic challenges and structural complexity. We present herein a simple and inexpensive system that, under solar irradiation, forms highly reductive radicals in the presence of an electron donor, with lifetimes exceeding the diurnal cycle. This radical species is formed within a cyanamide-functionalized polymeric network of heptazine units and can give off its trapped electrons in the dark to yield H , triggered by a co-catalyst, thus enabling the temporal decoupling of the light and dark reactions of photocatalytic hydrogen production through the radical's longevity. The system introduced here thus demonstrates a new approach for storing sunlight as long-lived radicals, and provides the structural basis for designing photocatalysts with long-lived photo-induced states.
While natural photosynthesis serves as the model system for efficient charge separation and decoupling of redox reactions, bio‐inspired artificial systems typically lack applicability owing to synthetic challenges and structural complexity. We present herein a simple and inexpensive system that, under solar irradiation, forms highly reductive radicals in the presence of an electron donor, with lifetimes exceeding the diurnal cycle. This radical species is formed within a cyanamide‐functionalized polymeric network of heptazine units and can give off its trapped electrons in the dark to yield H2, triggered by a co‐catalyst, thus enabling the temporal decoupling of the light and dark reactions of photocatalytic hydrogen production through the radical′s longevity. The system introduced here thus demonstrates a new approach for storing sunlight as long‐lived radicals, and provides the structural basis for designing photocatalysts with long‐lived photo‐induced states.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.