Chordomas are rare bone tumors with few therapeutic options. Here we show, using whole-exome and genome sequencing within a precision oncology program, that advanced chordomas ( n = 11) may be characterized by genomic patterns indicative of defective homologous recombination (HR) DNA repair and alterations affecting HR-related genes, including, for example, deletions and pathogenic germline variants of BRCA2 , NBN , and CHEK2 . A mutational signature associated with HR deficiency was significantly enriched in 72.7% of samples and co-occurred with genomic instability. The poly(ADP-ribose) polymerase (PARP) inhibitor olaparib, which is preferentially toxic to HR-incompetent cells, led to prolonged clinical benefit in a patient with refractory chordoma, and whole-genome analysis at progression revealed a PARP1 p.T910A mutation predicted to disrupt the autoinhibitory PARP1 helical domain. These findings uncover a therapeutic opportunity in chordoma that warrants further exploration, and provide insight into the mechanisms underlying PARP inhibitor resistance.
Tumor microenvironment-targeted therapies are emerging as promising treatment options for different cancer types. Tumor-associated macrophages and microglia (TAMs) represent an abundant non-malignant cell type in brain metastases and have been proposed to modulate metastatic colonization and outgrowth. We used an inhibitor of colony stimulating factor 1 receptor (CSF1R) to target TAMs at distinct stages of the metastatic cascade in preclinical breast-to-brain metastasis models and found that CSF1R inhibition leads to anti-tumor responses in prevention and intervention trials. However, in established brain metastases, compensatory CSF2Rb-STAT5-mediated pro-inflammatory TAM activation blunted the ultimate efficacy of CSF1R inhibition by inducing neuro-inflammation gene signatures in association with wound repair responses that fostered tumor recurrence. Consequently, combined blockade of CSF1R and STAT5 signaling led to sustained tumor control, a normalization of microglial activation states and amelioration of neuronal damage.
Tumor microenvironment-targeted therapies are emerging as promising treatment options for different cancer types. Tumor-associated macrophages and microglia (TAMs) represent an abundant non-malignant cell type in brain metastases and have been proposed to modulate metastatic colonization and outgrowth. We used an inhibitor of colony stimulating factor 1 receptor (CSF1R) to target TAMs at distinct stages of the metastatic cascade in preclinical breast-to-brain metastasis models and found that CSF1R inhibition leads to anti-tumor responses in prevention and intervention trials. However, in established brain metastases, compensatory CSF2Rb-STAT5-mediated pro-inflammatory TAM activation blunted the ultimate efficacy of CSF1R inhibition by inducing neuro-inflammation gene signatures in association with wound repair responses that fostered tumor recurrence. Consequently, combined blockade of CSF1R and STAT5 signaling led to sustained tumor control, a normalization of microglial activation states and amelioration of neuronal damage.
Chordomas are rare tumors of the axial skeleton and skull base with few therapeutic options and no clinically validated molecular drug targets. The value of comprehensive genomic analyses for guiding medical therapy of patients with advanced-stage chordoma is unknown. We performed whole-exome and genome sequencing of tumor and matched germline control samples from 11 patients with locally advanced or metastatic chordoma within the MASTER program, a prospective clinical sequencing program of the German Cancer Consortium. All patients were pretreated and had progressive disease prior to molecular analysis. Genomic profiling showed that advanced chordomas are frequently characterized by genomic patterns indicative of defective homologous recombination (HR) DNA repair. First, DNA copy number profiles showed high numbers of structural variants greater than 10 million base pairs in size in the majority of cases. Second, all patients harbored somatic aberrations of at least 2 genes known to be involved in HR, and 10/11 cases harbored somatic alterations in 3 or more HR pathway genes. For example, 8 patients showed heterozygous BRCA2 deletions, which were associated with heterozygous deletions of ERCC6 in 6 patients and RAD54L in 7 patients, as well as PTEN alterations (heterozygous deletion, heterozygous mutation and deletion of the wildtype allele or loss of heterozygosity). Other recurrently altered HR genes included ATR, CHEK2, FANCC, FANCD2, FANCG, RAD18, RAD51B, and XRCC3. Third, pathogenic germline alterations were detected in 3 patients. A heterozygous BRCA2 frameshift mutation (p.T3085fs*26; ACMG Class 5), a heterozygous NBN frameshift mutation (p.K219Nfs*16; ACMG Class 5), and a heterozygous CHEK2 missense mutation (p.R145W; ACMG Class 4) were accompanied by somatic deletion of the respective wildtype alleles. Fourth, a mutational signature associated with HR deficiency was significantly enriched in 72.7% of samples and coincided with genomic instability. The high prevalence of an HR deficiency “footprint” in chordoma patients prompted us to explore the clinical efficacy of the poly(ADP-ribose) polymerase(PARP) inhibitor olaparib, which is preferentially toxic to HR-incompetent cells. Olaparib treatment of a patient whose tumor showed a prominent exposure to an HR deficiency-associated mutational signature, a high degree of genomic instability, and 13 heterozygous HR gene alterations halted tumor growth for 10 months. Whole-genome analysis at progression revealed a PARP1 p.T910A mutation predicted to disrupt the autoinhibitory PARP1 helical domain, providing novel insight into the mechanisms of PARP inhibitor resistance. In summary, our study has uncovered a key biological feature of advanced chordoma that represents an immediately actionable therapeutic target and provides a rationale for genomics-guided clinical trials of PARP inhibition in this intractable tumor entity. Citation Format: Stefan Gröschel, Daniel Hübschmann, Francesco Raimondi, Peter Horak, Gregor Warsow, Martina Fröhlich, Barbara Klink, Laura Gieldon, Barbara Hutter, Kortine Kleinhenz, David Bonekamp, Oliver Marschal, Priya Chudasama, Jagoda Mika, Marie Groth, Sebastian Uhrig, Stephen Krämer, Christoph Heining, Christoph Heilig, Daniela Richter, Eva Reisinger, Katrin Pfütze, Roland Eils, Stephan Wolf, Christof von Kalle, Christian Brandts, Claudia Scholl, Wilko Weichert, Stephan Richter, Sebastian Bauer, Roland Penzel, Evelin Schröck, Albrecht Stenzinger, Richard Schlenk, Benedikt Brors, Robert Russell, Hanno Glimm, Matthias Schlesner, Stefan Fröhling. Defective homologous recombination DNA repair as therapeutic target in advanced chordoma [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2019; 2019 Mar 29-Apr 3; Atlanta, GA. Philadelphia (PA): AACR; Cancer Res 2019;79(13 Suppl):Abstract nr 2723.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.