Functional selectivity of G protein-coupled receptor (GPCR) ligands toward different downstream signals has recently emerged as a general hallmark of this receptor class. However, pleiotropic and crosstalk signaling of GPCRs makes functional selectivity difficult to decode. To look from the initial active receptor point of view, we developed new, highly sensitive and direct bioluminescence resonance energy transfer-based G protein activation probes specific for all G protein isoforms, and we used them to evaluate the G protein-coupling activity of [(1)Sar(4)Ile(8)Ile]-angiotensin II (SII), previously described as an angiotensin II type 1 (AT(1)) receptor-biased agonist that is G protein independent but β-arrestin selective. By multiplexing assays sensing sequential signaling events, from receptor conformations to downstream signaling, we decoded SII as an agonist stabilizing a G protein-dependent AT(1A) receptor signaling module different from that of the physiological agonist angiotensin II, both in recombinant and primary cells. Thus, a biased agonist does not necessarily select effects from the physiological agonist but may instead stabilize and create a new distinct active pharmacological receptor entity.
Recent studies showed that mesenchymal stem cells (MSCs) transplantation significantly decreased cardiac fibrosis; however, the mechanisms involved in these effects are still poorly understood. In this work, we investigated whether the antifibrotic properties of MSCs involve the regulation of matrix metalloproteinases (MMPs) and matrix metalloproteinase endogenous inhibitor (TIMP) production by cardiac fibroblasts. In vitro experiments showed that conditioned medium from MSCs decreased viability, a-smooth muscle actin expression, and collagen secretion of cardiac fibroblasts. These effects were concomitant with the stimulation of MMP-2/MMP-9 activities and membrane type 1 MMP expression. Experiments performed with fibroblasts from MMP2-knockout mice demonstrated that MMP-2 plays a preponderant role in preventing collagen accumulation upon incubation with conditioned medium from MSCs. We found that MSC-conditioned medium also decreased the expression of TIMP2 in cardiac fibroblasts. In vivo studies showed that intracardiac injection of MSCs in a rat model of postischemic heart failure induced a significant decrease in ventricular fibrosis. This effect was associated with the improvement of morphological and functional cardiac parameters. In conclusion, we showed that MSCs modulate the phenotype of cardiac fibroblasts and their ability to degrade extracellular matrix. These properties of MSCs open new perspectives for understanding the mechanisms of action of MSCs and anticipate their potential therapeutic or side effects. STEM
Background-Serotonin (5-hydroxytryptamine ), released by activated platelets during cardiac ischemia, is metabolized by the mitochondrial enzyme monoamine oxidase A (MAO-A). Because hydrogen peroxide is one of the byproducts of 5-HT degradation by MAO-A, we investigated the potential role of reactive oxygen species generated by MAOs in 5-HT-dependent cardiomyocyte death and post-ischemia-reperfusion cardiac damage. Methods and Results-Treatment of isolated adult rat cardiomyocytes with 5-HT induced intracellular oxidative stress and cell apoptosis. The apoptotic cascade triggered by 5-HT involves release of cytochrome c, upregulation of proapoptotic Bax protein, and downregulation of antiapoptotic Bcl-2 protein. These effects were prevented by inhibition of amine transporter or MAO, antioxidants, or iron chelation. In contrast, cardiomyocyte apoptosis was only slightly affected by the 5-HT 2B receptor antagonist SB 206553. In vivo, inhibition of MAO-A largely reduced myocardial ultrastructural damage induced by 30 minutes of ischemia followed by 60 minutes of reperfusion in the rat heart. Cardioprotective effects of MAO inhibitors were associated with the prevention of postischemic oxidative stress, neutrophil accumulation, and mitochondrial-dependent cell death and were not reverted by SB 206553. Administration of MAO-A inhibitors during ischemia was still effective in preventing cardiac damage. Conclusions-Our results supply the first direct evidence that oxidative stress induced by MAO is responsible for receptor-independent apoptotic effects of 5-HT in cardiomyocytes and postischemic myocardial injury. These findings provide new insight into the mechanisms of 5-HT action in the heart and may constitute the basis for novel therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.