Recent studies have implicated the involvement of cell surface forms of nucleolin in tumor growth. In this study, we investigated whether a synthetic ligand of cell-surface nucleolin known as N6L could exert antitumor activity. We found that N6L inhibits the anchorage-dependent and independent growth of tumor cell lines and that it also hampers angiogenesis. Additionally, we found that N6L is a proapoptotic molecule that increases Annexin V staining and caspase-3/7 activity in vitro and DNA fragmentation in vivo. Through affinity isolation experiments and mass-spectrometry analysis, we also identified nucleophosmin as a new N6L target. Notably, in mouse xenograft models, N6L administration inhibited human tumor growth. Biodistribution studies carried out in tumor-bearing mice indicated that following administration N6L rapidly localizes to tumor tissue, consistent with its observed antitumor effects. Our findings define N6L as a novel anticancer drug candidate warranting further investigation. Cancer Res; 71(9); 3296-305. Ó2011 AACR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.