PURPOSE Whether dosimetric advantages of proton beam therapy (PBT) translate to improved clinical outcomes compared with intensity-modulated radiation therapy (IMRT) remains unclear. This randomized trial compared total toxicity burden (TTB) and progression-free survival (PFS) between these modalities for esophageal cancer. METHODS This phase IIB trial randomly assigned patients to PBT or IMRT (50.4 Gy), stratified for histology, resectability, induction chemotherapy, and stage. The prespecified coprimary end points were TTB and PFS. TTB, a composite score of 11 distinct adverse events (AEs), including common toxicities as well as postoperative complications (POCs) in operated patients, quantified the extent of AE severity experienced over the duration of 1 year following treatment. The trial was conducted using Bayesian group sequential design with three planned interim analyses at 33%, 50%, and 67% of expected accrual (adjusted for follow-up). RESULTS This trial (commenced April 2012) was approved for closure and analysis upon activation of NRG-GI006 in March 2019, which occurred immediately prior to the planned 67% interim analysis. Altogether, 145 patients were randomly assigned (72 IMRT, 73 PBT), and 107 patients (61 IMRT, 46 PBT) were evaluable. Median follow-up was 44.1 months. Fifty-one patients (30 IMRT, 21 PBT) underwent esophagectomy; 80% of PBT was passive scattering. The posterior mean TTB was 2.3 times higher for IMRT (39.9; 95% highest posterior density interval, 26.2-54.9) than PBT (17.4; 10.5-25.0). The mean POC score was 7.6 times higher for IMRT (19.1; 7.3-32.3) versus PBT (2.5; 0.3-5.2). The posterior probability that mean TTB was lower for PBT compared with IMRT was 0.9989, which exceeded the trial’s stopping boundary of 0.9942 at the 67% interim analysis. The 3-year PFS rate (50.8% v 51.2%) and 3-year overall survival rates (44.5% v 44.5%) were similar. CONCLUSION For locally advanced esophageal cancer, PBT reduced the risk and severity of AEs compared with IMRT while maintaining similar PFS.
Background and Purpose Circulating lymphocytes are exquisitely sensitive to radiation exposure, even to low scattered doses which can vary drastically between radiation modalities. We compared the relative risk of radiation-induced lymphopenia between Intensity Modulated Radiation Therapy (IMRT) or Proton Beam Therapy (PBT) in esophageal cancer (EC) patients undergoing neoadjuvant chemoradiation therapy (nCRT). Material and Methods EC patients treated with IMRT and PBT were propensity matched based on key clinical variables. Treatment-associated lymphopenia was graded using CTCAE v.4.0. Using matched cohorts, univariate and multivariable multiple logistic regression was used to identify factors associated with increased risk of grade 4 lymphopenia as well as characterize their relative contributions. Results Among the 480 patients treated with nCRT, 136 IMRT patients were propensity score matched with 136 PBT patients. In the matched groups, a greater proportion of the IMRT patients (55/136, 40.4 %) developed grade 4 lymphopenia during nCRT compared with the PBT patients (24/136, 17.6 %, P < 0.0001). On multivariable analysis, PBT was significantly associated with a reduction in grade 4 lymphopenia risk (odds ratio, 0.29; 95% confidence interval, 0.16 to 0.52; P < 0.0001). Conclusion PBT is associated with significant risk reduction in grade 4 lymphopenia during nCRT in esophageal cancer.
Purpose: This randomized, multicenter, open-label, phase Ib/II study assessed durvalumab and tremelimumab in combination or as monotherapy for chemotherapy-refractory gastric cancer or gastroesophageal junction (GEJ) cancer. Patients and Methods: Second-line patients were randomized 2:2:1 to receive durvalumab plus tremelimumab (arm A), or durvalumab (arm B) or tremelimumab monotherapy (arm C), and third-line patients received durvalumab plus tremelimumab (arm D). A tumor-based IFNg gene signature was prospectively evaluated as a potential predictive biomarker in second-and third-line patients receiving the combination (arm E). The coprimary endpoints were objective response rate and progression-free survival (PFS) rate at 6 months. Results: A total of 113 patients were treated: 6 in phase Ib and 107 (arm A, 27; arm B, 24; arm C, 12; arm D, 25; arm E, 19) in phase II. Overall response rates were 7.4%, 0%, 8.3%, 4.0%, and 15.8% in the five arms, respectively. PFS rates at 6 months were 6.1%, 0%, 20%, 15%, and 0%, and 12-month overall survival rates were 37.0%, 4.6%, 22.9%, 38.8%, and NA, respectively. Treatment-related grade 3/4 adverse events were reported in 17%, 4%, 42%, 16%, and 11% of patients, respectively. Conclusions: Response rates were low regardless of monotherapy or combination strategies. No new safety signals were identified. Including use of a tumor-based IFNg signature and change in baseline and on-treatment circulating tumor DNA are clinically feasible and may be novel strategies to improve treatment response in this difficult-to-treat population.
Background Cancer Associated Macrophage-Like cells (CAMLs) are polynucleated circulating stromal cells found in the bloodstream of numerous solid-tumor malignancies. Variations within CAML size have been associated with poorer progression free survival (PFS) and overall survival (OS) in a variety of cancers; however, no study has evaluated their clinical significance in esophageal cancer (EC). Methods To examine this significance, we ran a 2 year prospective pilot study consisting of newly diagnosed stage I-III EC patients (n = 32) receiving chemoradiotherapy (CRT). CAML sizes were sequentially monitored prior to CRT (BL), ~ 2 weeks into treatment (T1), and at the first available sample after the completion of CRT (T2). Results We found CAMLs in 88% (n = 28/32) of all patient samples throughout the trial, with a sensitivity of 76% (n = 22/29) in pre-treatment screening samples. Improved 2 year PFS and OS was found in patients with CAMLs < 50 μm by the completion of CRT over patients with CAMLs ≥ 50 μm; PFS (HR = 12.0, 95% CI = 2.7–54.1, p = 0.004) and OS (HR = 9.0, 95%CI = 1.9–43.5, p = 0.019). Conclusions Tracking CAML sizes throughout CRT as a minimally invasive biomarker may serve as a prognostic tool in mapping EC progression, and further studies are warranted to determine if presence of these cells prior to treatment suggest diagnostic value for at-risk populations.
PURPOSE Human epidermal growth factor receptor 2 (HER2) is an effective therapeutic target in breast and gastric and gastroesophageal junction cancers. However, less is known about the prevalence of ERBB2 ( HER2) amplification and the efficacy of HER2-targeted treatment in other tumors. PATIENTS AND METHODS We assessed HER2 amplification status among 5,002 patients with advanced disease (excluding breast cancer) who underwent next-generation sequencing. We evaluated the clinical benefit of HER2-targeted therapy by measuring the time-dependent overall survival (OS) from the genomic testing results, progression-free survival (PFS), and PFS during HER2-targeted therapy (PFS2) compared with PFS during prior therapy (PFS1). RESULTS Overall, 122 patients (2.4%) had HER2 amplification, including patients with endometrial (5.3%), bladder (5.2%), biliary or gallbladder (4.9%), salivary (4.7%), and colorectal cancer (3.6%). Forty patients (38%) with nongastric, nongastroesophageal junction, or nonesophageal cancers received at least one line of HER2-targeted therapy. Patients receiving HER2-targeted therapy had a median OS of 18.6 months, compared with 10.9 months for patients who did not receive HER2-targeted therapy ( P = .070). On multivariable analysis, HER2-targeted therapy was significantly associated with increased OS (hazard ratio, 0.5; 95% CI, 0.27 to 0.93; P = .029), regardless of sex, age, or number of prior lines of treatment. The PFS2-to-PFS1 ratio was 1.3 or greater in 21 (57%) of 37 patients who received HER2-targeted therapy not in the first line of systemic treatment, and the median PFS2 and PFS1 times were 24 and 13 weeks, respectively ( P < .001). CONCLUSION HER2 amplifications using next-generation sequencing can be identified in a variety of tumor types. HER2-targeted therapy may confer clinical benefit in tumor types other than those for which HER2 inhibitors are approved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.