What is universal about music, and what varies? We built a corpus of ethnographic text on musical behavior from a representative sample of the world’s societies, as well as a discography of audio recordings. The ethnographic corpus reveals that music (including songs with words) appears in every society observed; that music varies along three dimensions (formality, arousal, religiosity), more within societies than across them; and that music is associated with certain behavioral contexts such as infant care, healing, dance, and love. The discography—analyzed through machine summaries, amateur and expert listener ratings, and manual transcriptions—reveals that acoustic features of songs predict their primary behavioral context; that tonality is widespread, perhaps universal; that music varies in rhythmic and melodic complexity; and that elements of melodies and rhythms found worldwide follow power laws.
One sentence summary: Ethnographic text and audio recordings map out universals and variation in world music. Abstract:What is universal about music, and what varies? We built a corpus of ethnographic text on musical behavior from a representative sample of the world's societies, and a discography of audio recordings. The ethnographic corpus reveals that music appears in every society observed; that music varies along three dimensions (formality, arousal, religiosity), more within societies than across them; and that music is associated with certain behavioral contexts such as infant care, healing, dance, and love. The 2 discography, analyzed through machine summaries, amateur and expert listener ratings, and manual transcriptions, revealed that acoustic features of songs predict their primary behavioral context; that tonality is widespread, perhaps universal; that music varies in rhythmic and melodic complexity; and that melodies and rhythms found worldwide follow power laws. Main Text:At least since Henry Wadsworth Longfellow declared in 1835 that "music is the universal language of mankind" (1) the conventional wisdom among many authors, scholars, and scientists is that music is a human universal, with profound similarities across societies springing from shared features of human psychology (2). On this understanding, musicality is embedded in the biology of Homo sapiens(3), whether as one or more evolutionary adaptations for music (4, 5), the byproducts of adaptations for auditory perception, motor control, language, and affect (6-9), or some amalgam.Music certainly is widespread (10-12), ancient (13), and appealing to almost everyone (14). Yet claims that it is universal or has universal features are commonly made without citation (e.g., (15-17)), and those with the greatest expertise on the topic are skeptical. With a few exceptions (18), most music scholars, particularly ethnomusicologists, suggest there are few if any universals in music (19)(20)(21)(22)(23). They point to variability in the interpretations of a given piece of music (24-26), the importance of natural, political, and economic environments in shaping music (27)(28)(29), the diverse forms of music that can share similar behavioral functions (30), and the methodological difficulty of comparing the music of different societies (12,31,32). Given these criticisms, along with a history of some scholars using comparative work to advance erroneous claims of cultural or racial superiority (33), the common view among music scholars today (34,35) is summarized by the ethnomusicologist George List: "The only universal aspect of music seems to be that most people make it. … I could provide pages of examples of the nonuniversality of music. This is hardly worth the trouble." (36) Are there, in fact, meaningful universals in music? No one doubts that music varies across cultures, but diversity in behavior can shroud regularities emerging from common underlying psychological mechanisms. Beginning with Noam Chomsky's hypothesis that the world's languages 3 ...
General rightsCopyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policyIf you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Genetic liability to substance use disorders can be parsed into loci conferring general and substance-specific addiction risk. We report a multivariate genome-wide association study that disaggregates general and substance-specific loci for problematic alcohol use, problematic tobacco use, and cannabis and opioid use disorders in a sample of 1,025,550 individuals of European and 92,630 individuals of African descent. Nineteen loci were genome-wide significant for the general addiction risk factor (addiction-rf), which showed high polygenicity. Across ancestries PDE4B was significant (among others), suggesting dopamine regulation as a cross-trait vulnerability. The addiction-rf polygenic risk score was associated with substance use disorders, psychopathologies, somatic conditions, and environments associated with the onset of addictions. Substance-specific loci (9 for alcohol, 32 for tobacco, 5 for cannabis, 1 for opioids) included metabolic and receptor genes. These findings provide insight into the genetic architecture of general and substance-specific use disorder risk that may be leveraged as treatment targets.
Despite the large toll of opioid use disorder (OUD), genome-wide association studies (GWAS) of OUD to date have yielded few susceptibility loci. We performed a large-scale GWAS of OUD in individuals of European (EUR) and African (AFR) ancestry, optimizing genetic informativeness by performing MTAG (Multi-trait analysis of GWAS) with genetically correlated substance use disorders (SUDs). Meta-analysis included seven cohorts: the Million Veteran Program, Psychiatric Genomics Consortium, iPSYCH, FinnGen, Partners Biobank, BioVU, and Yale-Penn 3, resulting in a total N = 639,063 (Ncases = 20,686;Neffective = 77,026) across ancestries. OUD cases were defined as having a lifetime OUD diagnosis, and controls as anyone not known to meet OUD criteria. We estimated SNP-heritability (h2SNP) and genetic correlations (rg). Based on genetic correlation, we performed MTAG on OUD, alcohol use disorder (AUD), and cannabis use disorder (CanUD). A leave-one-out polygenic risk score (PRS) analysis was performed to compare OUD and OUD-MTAG PRS as predictors of OUD case status in Yale-Penn 3. The EUR meta-analysis identified three genome-wide significant (GWS; p ≤ 5 × 10−8) lead SNPs—one at FURIN (rs11372849; p = 9.54 × 10−10) and two OPRM1 variants (rs1799971, p = 4.92 × 10−09; rs79704991, p = 1.11 × 10−08; r2 = 0.02). Rs1799971 (p = 4.91 × 10−08) and another OPRM1 variant (rs9478500; p = 1.95 × 10−08; r2 = 0.03) were identified in the cross-ancestry meta-analysis. Estimated h2SNP was 12.75%, with strong rg with CanUD (rg = 0.82; p = 1.14 × 10−47) and AUD (rg = 0.77; p = 6.36 × 10−78). The OUD-MTAG resulted in a GWAS Nequivalent = 128,748 and 18 independent GWS loci, some mapping to genes or gene regions that have previously been associated with psychiatric or addiction phenotypes. The OUD-MTAG PRS accounted for 3.81% of OUD variance (beta = 0.61;s.e. = 0.066; p = 2.00 × 10−16) compared to 2.41% (beta = 0.45; s.e. = 0.058; p = 2.90 × 10−13) explained by the OUD PRS. The current study identified OUD variant associations at OPRM1, single variant associations with FURIN, and 18 GWS associations in the OUD-MTAG. The genetic architecture of OUD is likely influenced by both OUD-specific loci and loci shared across SUDs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.