We report the comparative proteomic characterization of the venoms of adult and newborn specimens of the lancehead pitviper Bothrops asper from two geographically isolated populations from the Caribbean and the Pacific versants of Costa Rica. The crude venoms were fractionated by reverse-phase HPLC, followed by analysis of each chromatographic fraction by SDS-PAGE, N-terminal sequencing, MALDI-TOF mass fingerprinting, and collision-induced dissociation tandem mass spectrometry of tryptic peptides. The two B. asper populations, separated since the late Miocene or early Pliocene (8-5 mya) by the Guanacaste Mountain Range, Central Mountain Range, and Talamanca Mountain Range, contain both identical and different (iso)enzymes from the PLA 2 , serine proteinase, and SVMP families. Using a similarity coefficient, we estimate that the similarity of venom proteins between the two B. asper populations may be around 52%. Compositional differences between venoms among different geographic regions may be due to evolutionary environmental pressure acting on isolated populations. To investigate venom variability among specimens from the two B. asper populations, the reverse-phase HPLC protein profiles of 15 venoms from Caribbean specimens and 11 venoms from snakes from Pacific regions were compared. Within each B. asper geographic populations, all major venom protein families appeared to be subjected to individual variations. The occurrence of intraspecific individual allopatric variability highlights the concept that a species, B. asper in our case, should be considered as a group of metapopulations. Analysis of pooled venoms of neonate specimens from Caribbean and Pacific regions with those of adult snakes from the same geographical habitat revealed prominent ontogenetic changes in both geographical populations. Major ontogenetic changes appear to be a shift from a PIII-SVMP-rich to a PI-SVMP-rich venom and the secretion in adults of a distinct set of PLA 2 molecules than in the neonates. In addition, the ontogenetic venom composition shift results in increasing venom complexity, indicating that the requirement for the venom to immobilize prey and initiate digestion may change with the size (age) of the snake. Besides ecological and taxonomical implications, the geographical venom variability reported here may have an impact in the treatment of bite victims and in the selection of specimens for antivenom production. The occurrence of intraspecies variability in the biochemical composition and symptomatology after envenomation by snakes from different gegraphical location and age has long been apreciated by herpetologist and toxinologists, though detailed comparative proteomic analysis are scarce. Our study represents the first detailed characterization of individual and ontogenetic venom protein profile variations in two geographical isolated B. asper populations, and highlights the necessity of using pooled venoms as a statistically representative venom for antivenom production.
We report a comparative venomic and antivenomic characterization of the venoms of newborn and adult specimens of the Central American rattlesnake, Crotalus simus, and of the subspecies cumanensis, durissus, ruruima, and terrificus of South American Crotalus durissus. Neonate and adult C. simus share about 50% of their venom proteome. The venom proteome of 6-week-old C. simus is predominantly made of the neurotoxic heterodimeric phospholipase A(2) (PLA(2) crotoxin) (55.9%) and serine proteinases (36%), whereas snake venom Zn(2+)-metalloproteinases (SVMPs), exclusively of class PIII, represent only 2% of the total venom proteins. In marked contrast, venom from adult C. simus comprises toxins from 7 protein families. A large proportion (71.7%) of these toxins are SVMPs, two-thirds of which belong to the PIII class. These toxin profiles correlate well with the overall biochemical and pharmacological features of venoms from adult (hemorrhagic) and newborn (neurotoxic) C. simus specimens. The venoms of the South American Crotalus subspecies belong to one of two distinct phenotypes. C. d. cumanensis exhibits high levels of SVMPs and low lethal potency (LD(50)), whereas C. d. subspecies terrificus, ruruima, and durissus have low SVMP activity and high neurotoxicity to mice. Their overall toxin compositions explain the outcome of envenomation by these species. Further, in all C. simus and C. durissus venoms, the concentration of neurotoxins (crotoxin and crotamine) is directly related with lethal activity, whereas lethality and metalloproteinase activity show an inverse relationship. The similar venom toxin profiles of newborn C. simus and adult C. durissus terrificus, ruruima, and durissus subspecies strongly suggests that the South American taxa have retained juvenile venom characteristics in the adult form (paedomorphism) along their North-South stepping-stone dispersal. The driving force behind paedomorphism is often competition or predation pressure. The increased concentration of the neurotoxins crotoxin and crotamine in South American rattlesnake venoms strongly argues that the gain of neurotoxicity and lethal venom activities to mammals may have represented the key axis along which overall venom toxicity has evolved during Crotalus durissus invasion of South America. The paedomorphic trend is supported by a decreasing LNC (lethal neurotoxicity coefficient, defined as the ratio between the average LD(50) of the venom and the crotoxin + crotamine concentration) along the North-South axis, coincident with the evolutionary dispersal pattern of the Neotropical rattlesnakes. The indistinguisable immunoreactivity patterns of Costa Rican and Venezuelan polyvalent antivenoms toward C. simus and C. durissus venoms strongly suggest the possibility of using these antivenoms indistinctly for the management of snakebites by adult C. simus and by certain C. d. cumanensis populations exhibiting a hemorrhagic venom phenotype. The antivenomic results also explain why the antivenoms effectively neutralize the hemorrhagic activity of...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.