To further dissect the genetic architecture of colorectal cancer (CRC), we performed whole-genome sequencing of 1,439 cases and 720 controls, imputed discovered sequence variants and Haplotype Reference Consortium panel variants into genome-wide association study data, and tested for association in 34,869 cases and 29,051 controls. Findings were followed up in an additional 23,262 cases and 38,296 controls. We discovered a strongly protective 0.3% frequency variant signal at CHD1 . In a combined meta-analysis of 125,478 individuals, we identified 40 new independent signals at P <5×10 −8 , bringing the number of known independent signals for CRC to approximately 100. New signals implicate lower-frequency variants, Krüppel-like factors, Hedgehog signaling, Hippo-YAP signaling, long noncoding RNAs, somatic drivers, and support a role of immune function. Heritability analyses suggest that CRC risk is highly polygenic, and larger, more comprehensive studies enabling rare variant analysis will improve understanding of underlying biology, and impact personalized screening strategies and drug development.
This study provides insight into the architecture of common genetic variation contributing to CRC etiology and improves risk prediction for individualized screening.
Genetic susceptibility to colorectal cancer is caused by rare pathogenic mutations and common genetic variants that contribute to familial risk. Here we report the results of a two-stage association study with 18,299 cases of colorectal cancer and 19,656 controls, with follow-up of the most statistically significant genetic loci in 4,725 cases and 9,969 controls from two Asian consortia. We describe six new susceptibility loci reaching a genome-wide threshold of P<5.0E-08. These findings provide additional insight into the underlying biological mechanisms of colorectal cancer and demonstrate the scientific value of large consortia-based genetic epidemiology studies.
Purpose Mutations in the CDH1 gene confer up to an 80% lifetime risk of diffuse gastric cancer and up to a 60% lifetime risk of lobular breast cancer. Testing for CDH1 mutations is recommended for individuals who meet the International Gastric Cancer Linkage Consortium (IGCLC) guidelines. However, the interpretation of unexpected CDH1 mutations identified in patients who do not meet IGCLC criteria or do not have phenotypes suggestive of hereditary diffuse gastric cancer is clinically challenging. This study aims to describe phenotypes of CDH1 mutation carriers identified through multigene panel testing (MGPT) and to offer informed recommendations for medical management. Patients and Methods This cross-sectional prevalence study included all patients who underwent MGPT between March 2012 and September 2014 from a commercial laboratory (n = 26,936) and an academic medical center cancer genetics clinic (n = 318) to estimate CDH1 mutation prevalence and associated clinical phenotypes. CDH1 mutation carriers were classified as IGCLC positive (met criteria), IGCLC partial phenotype, and IGCLC negative. Results In the laboratory cohort, 16 (0.06%) of 26,936 patients were identified as having a pathogenic CDH1 mutation. In the clinic cohort, four (1.26%) of 318 had a pathogenic CDH1 mutation. Overall, 65% of mutation carriers did not meet the revised testing criteria published in 2015. All three CDH1 mutation carriers who had risk-reducing gastrectomy had pathologic evidence of diffuse gastric cancer despite not having met IGCLC criteria. Conclusion The majority of CDH1 mutations identified on MGPT are unexpected and found in individuals who do not fit the accepted diagnostic testing criteria. These test results alter the medical management of CDH1-positive patients and families and provide opportunities for early detection and risk reduction.
Genome-wide association studies have reported 56 independently associated colorectal cancer (CRC) risk variants, most of which are non-coding and believed to exert their effects by modulating gene expression. The computational method PrediXcan uses cis -regulatory variant predictors to impute expression and perform gene-level association tests in GWAS without directly measured transcriptomes. In this study, we used reference datasets from colon ( n = 169) and whole blood ( n = 922) transcriptomes to test CRC association with genetically determined expression levels in a genome-wide analysis of 12,186 cases and 14,718 controls. Three novel associations were discovered from colon transverse models at FDR ≤ 0.2 and further evaluated in an independent replication including 32,825 cases and 39,933 controls. After adjusting for multiple comparisons, we found statistically significant associations using colon transcriptome models with TRIM4 (discovery P = 2.2 × 10 − 4 , replication P = 0.01), and PYGL (discovery P = 2.3 × 10 − 4 , replication P = 6.7 × 10 − 4 ). Interestingly, both genes encode proteins that influence redox homeostasis and are related to cellular metabolic reprogramming in tumors, implicating a novel CRC pathway linked to cell growth and proliferation. Defining CRC risk regions as one megabase up- and downstream of one of the 56 independent risk variants, we defined 44 non-overlapping CRC-risk regions. Among these risk regions, we identified genes associated with CRC ( P < 0.05) in 34/44 CRC-risk regions. Importantly, CRC association was found for two genes in the previously reported 2q25 locus, CXCR1 and CXCR2 , which are potential cancer therapeutic targets. These findings provide strong candidate genes to prioritize for subsequent laboratory follow-up of GWAS loci. This study is the first to implement PrediXcan in a large colorectal cancer study and findings highlight the utility of integrating transcriptome data in GWAS for discovery of, and biological insight into, risk loci. Electronic supplementary material The online version of this article (10.1007/s00439-019-01989-8) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.