Thin AlO x films were grown on 4H-SiC by plasma-assisted atomic layer deposition (ALD) and plasma assisted electron-beam evaporation at 300˚C. After deposition, the films were annealed in nitrogen at temperatures between 500˚C and 1050˚C. The films were analyzed by X-ray reflectivity (XRR) and atomic force microscopy (AFM) in order to determine film thickness, surface roughness and density of the AlO x layer. No differences were found in the behavior of AlO x films upon annealing for the two different employed deposition techniques. Annealing results in film densification, which is most prominent above the crystallization temperature (800˚C). In addition to the increasing density, a mass loss of ~5% was determined and attributed to the presence of aluminum oxyhydroxide in as deposited films. All changes in film properties after high temperature annealing appear to be independent of the deposition technique.
Alloys of scandium with AlN exhibit an enhanced piezoelectric coefficient that can boost the performance of nitride‐based electronic and optoelectronic devices such as high electron mobility transistors (HEMTs). Consequently, there is increasing interest in the epitaxial growth of high‐quality AlScN/GaN heterostructures. So far, only very recent reports on AlScN HEMT structures grown by molecular beam epitaxy (MBE) have been published. Herein, the motivation for depositing AlScN epitaxial layers by metal‐organic chemical vapor deposition (MOCVD) as well as the challenges associated with this approach are explained. For the first time, the successful deposition of epitaxial layers with a Sc content up to 30% (Al0.7Sc0.3N) is reported. It is shown that the deposited films consist of wurtzite‐type AlScN with high crystalline quality, demonstrating that MOCVD is suitable for the growth of HEMT structures with Sc‐based ternary nitrides.
AlScN/GaN heterostructures are worth investigating due to the remarkable high gradients in spontaneous polarization at their interfaces, which brings them into play for a wide field of potential high-power and high-frequency electronic applications. In this work, AlScN/GaN heterostructures for high electron mobility transistor (HEMT) structures were grown by metalorganic chemical vapor deposition. We have investigated the impact of growth parameters on thick AlScN layers and on thin AlScN/GaN heterostructures. Growth parameters, such as temperature, V/III ratio, pressure, and growth mode, were varied with the focus on surface morphology, crystal quality, and incorporation of impurities. High growth temperatures improve the surface quality and reduce impurities incorporation notably. In addition to that, a slight decrease in carbon concentration is obtained by adopting a pulsed supply of metalorganic precursors. V/III ratio and pressure did not influence the layer quality observably. Heterostructures with root mean square surface roughness values as low as 0.38 nm, revealing smooth growth steps, were achieved. The presence of two-dimensional electron gases with sheet carrier densities and mobilities of up to 2 × 1013 cm−2 and close to 900 cm2/(V s), respectively, resulted in channel sheet resistances as low as 337 Ω/sq, very suitable for AlScN/GaN HEMTs. Heterostructures with sheet resistances below 200 Ω/sq and sheet carrier densities of 5 × 1013 cm−2 were also achieved but showed significantly lower mobility.
We present detailed investigations of the structural, elastic, dielectric, and piezoelectric properties of scandium aluminum nitride (ScxAl1−xN) with the wurtzite crystal structure by means of first-principles calculations based on density functional theory in order to enable a detailed comparison to the corresponding physical properties of GaAlN and InAlN. The goal of our approach is to use atomistic simulations to extract the novel solid state characteristics of ScxAl1−xN crystals by the determination of complete sets of coefficients for the elastic, compliance, and piezoelectric tensor and to confirm the theoretical predictions by experimental measurements of selected tensor coefficients. The calculation of the tensor components is accompanied by a detailed analysis of the crystal structures, e.g., average bond length, bond angles, lattice parameters, and mass density in dependence on alloy composition of ScxAl1−xN. If an increasing number of Al atoms of up to x = 0.5 are replaced by Sc atoms, we observe a nonlinear change of the ratio of lattice parameter c(x)a(x) and average bond angles of about 10% and 5%, respectively, which give an indication of an increasing deviation of the crystal structure of ScxAl1−xN from an ideal hexagonal lattice. As a consequence of the deformed crystal structure and the iconicity of the Sc–N bond, we predict a change in value of the elastic coefficient C33ScAlN(x), the piezoelectric coefficient e33ScAlN(x), and the value of spontaneous polarization PSPScAlN(x) of up to 65%, 150%, and 230%, respectively. Based, on these simulation results, physical features of practical use are derived, like the average bulk, shear, and the Young modulus as well as the reciprocal Young's modulus and Poisson ratio. Furthermore, the spontaneous polarization of ScxAl1−xN is approximated, taking nonlinear effects into account as well as the piezoelectric polarization caused by uniaxial, biaxial, and hydrostatic stresses in dependency on alloy composition and strain. A detailed comparison of the structural and polarization related properties of GaAlN and InAlN allows us to point out the peculiarity of wurtzite ScAlN crystals within the group III-nitrides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.