Natural killer (NK) cells and dendritic cells (DCs) are, respectively, central components of innate and adaptive immune responses. We describe here a third DC lineage, termed interferon-producing killer DCs (IKDCs), distinct from conventional DCs and plasmacytoid DCs and with the molecular expression profile of both NK cells and DCs. They produce substantial amounts of type I interferons (IFN) and interleukin (IL)-12 or IFN-gamma, depending on activation stimuli. Upon stimulation with CpG oligodeoxynucleotides, ligands for Toll-like receptor (TLR)-9, IKDCs kill typical NK target cells using NK-activating receptors. Their cytolytic capacity subsequently diminishes, associated with the loss of NKG2D receptor (also known as Klrk1) and its adaptors, Dap10 and Dap12. As cytotoxicity is lost, DC-like antigen-presenting activity is gained, associated with upregulation of surface major histocompatibility complex class II (MHC II) and costimulatory molecules, which formally distinguish them from classical NK cells. In vivo, splenic IKDCs preferentially show NK function and, upon systemic infection, migrate to lymph nodes, where they primarily show antigen-presenting cell activity. By virtue of their capacity to kill target cells, followed by antigen presentation, IKDCs provide a link between innate and adaptive immunity.
Human nervous system development is an intricate and protracted process that requires precise spatio-temporal transcriptional regulation. Here we generated tissue-level and single-cell transcriptomic data from up to sixteen brain regions covering prenatal and postnatal rhesus macaque development. Integrative analysis with complementary human data revealed that global intra-species (ontogenetic) and inter-species (phylogenetic) regional transcriptomic differences exhibit concerted cup-shaped patterns, with a late fetal-to-infancy (perinatal) convergence. Prenatal neocortical transcriptomic patterns revealed transient topographic gradients, whereas postnatal patterns largely reflected functional hierarchy. Genes exhibiting heterotopic and heterochronic divergence included those transiently enriched in the prenatal prefrontal cortex or linked to autism spectrum disorder and schizophrenia. Our findings shed light on transcriptomic programs underlying the evolution of human brain development and the pathogenesis of neuropsychiatric disorders.
Recent research on disparate psychiatric disorders has implicated rare variants in genes involved in global gene regulation and chromatin modification, as well as many common variants located primarily in regulatory regions of the genome. Understanding precisely how these variants contribute to disease will require a deeper appreciation for the mechanisms of gene regulation in the developing and adult human brain. The PsychENCODE project aims to produce a public resource of multidimensional genomic data using tissue- and cell type–specific samples from approximately 1,000 phenotypically well-characterized, high-quality healthy and disease-affected human post-mortem brains, as well as functionally characterize disease-associated regulatory elements and variants in model systems. We are beginning with a focus on autism spectrum disorder, bipolar disorder and schizophrenia, and expect that this knowledge will apply to a wide variety of psychiatric disorders. This paper outlines the motivation and design of PsychENCODE.
To better understand the molecular and cellular differences in brain organization between human and non-human primates, we performed transcriptome sequencing of sixteen regions of adult human, chimpanzee, and macaque brains. Integration with human single-cell transcriptomic data revealed global, regional, and cell-type specific species expression differences in genes representing distinct functional categories. We validated and further characterized the human specificity of genes enriched in distinct cell types through histological and functional analyses, including rare subpallial-derived interneurons expressing dopamine biosynthesis genes enriched in the human striatum and absent in the non-human African ape neocortex. Our integrated analysis of the generated data revealed diverse molecular and cellular features of the phylogenetic reorganization of the human brain across multiple levels of organization, with relevance for brain function and disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.