Big Data Analytics is an emerging field since massive storage and computing capabilities have been made available by advanced e-infrastructures. Earth and Environmental sciences are likely to benefit from Big Data Analytics techniques supporting the processing of the large number of Earth Observation datasets currently acquired and generated through observations and simulations. However, Earth Science data and applications present specificities in terms of relevance of the geospatial information, wide heterogeneity of data models and formats, and complexity of processing. Therefore, Big Earth Data Analytics requires specifically tailored techniques and tools. The EarthServer Big Earth Data Analytics engine offers a solution for coverage-type datasets, built around a high performance array database technology, and the adoption and enhancement of standards for service interaction (OGC WCS and WCPS). The EarthServer solution, led by the collection of requirements from scientific communities and international initiatives, provides a holistic approach that ranges from query languages and scalability up to mobile access and visualization. The result is demonstrated and validated through the development of lighthouse applications in the Marine, Geology, Atmospheric, Planetary and Cryospheric science domains.
The benefits of using e-Infrastructure environments, such as cloud, grid, and high performance computing, for performing scientific experiments could be quite significant. In particular, modeling and simulation, which can serve as a key decision making and system analysis tool, could benefit immensely from such environments ranging from issues of how a community of practice could access a simulation to how it could be run quickly. However, the access and use of these e-Infrastructure environments may present a completely different set of challenges, most especially for non-ICT users. Science Gateways (SG), which are digital interfaces to advanced technologies, can be used to overcome the challenges of running many simulations on e-Infrastructures in a reasonable amount of time. In this work, we developed a SG, based on the Liferay portal framework and the Catania grid and cloud engine. We show how an Agent-Based infection simulation, which has been implemented using the Recursive Porous Agent Simulation Toolkit (REPAST) Simphony, can be ported to a Science Gateway and deployed on distributed computing infrastructures. This demonstration illustrates how this technology can be used easily to allow multiple users across the world to access a simulation and to execute their applications in an e-Infrastructures environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.