In Candida albicans wild‐type cells, the β1,6‐glucanase‐extractable glycosylphosphatidylinositol (GPI)‐dependent cell wall proteins (CWPs) account for about 88% of all covalently linked CWPs. Approximately 90% of these GPI‐CWPs, including Als1p and Als3p, are attached via β1,6‐glucan to β1,3‐glucan. The remaining GPI‐CWPs are linked through β1,6‐glucan to chitin. The β1,6‐glucanase‐resistant protein fraction is small and consists of Pir‐related CWPs, which are attached to β1,3‐glucan through an alkali‐labile linkage. Immunogold labelling and Western analysis, using an antiserum directed against Saccharomyces cerevisiae Pir2p/Hsp150, point to the localization of at least two differentially expressed Pir2 homologues in the cell wall of C. albicans. In mnn9Δ and pmt1Δ mutant strains, which are defective in N‐ and O‐glycosylation of proteins respectively, we observed enhanced chitin levels together with an increased coupling of GPI‐CWPs through β1,6‐glucan to chitin. In these cells, the level of Pir‐CWPs was slightly upregulated. A slightly increased incorporation of Pir proteins was also observed in a β1,6‐glucan‐deficient hemizygous kre6Δ mutant. Taken together, these observations show that C. albicans follows the same basic rules as S. cerevisiae in constructing a cell wall and indicate that a cell wall salvage mechanism is activated when Candida cells are confronted with cell wall weakening.
SummaryThe cell wall of yeast contains a major structural unit, consisting of a cell wall protein (CWP) attached via a glycosylphosphatidylinositol (GPI)-derived structure to 1,6-glucan, which is linked in turn to 1,3-glucan. When isolated cell walls were digested with 1,6-glucanase, 16% of all CWPs remained insoluble, suggesting an alternative linkage between CWPs and structural cell wall components that does not involve 1,6-glucan. The 1,6-glucanase-resistant protein fraction contained the recently identified GPI-lacking, O-glycosylated Pir-CWPs, including Pir2p/Hsp150. Evidence is presented that Pir2p/Hsp150 is attached to 1,3-glucan through an alkali-sensitive linkage, without 1,6-glucan as an interconnecting moiety. In 1,6-glucan-deficient mutants, the 1,6-glucanase-resistant protein fraction increased from 16% to over 80%. This was accompanied by increased incorporation of Pir2p/Hsp150. It is argued that this is part of a more general compensatory mechanism in response to cell wall weakening caused by low levels of 1,6-glucan.
A large class of proteins with cytosolic functional domains is anchored to selected intracellular membranes by a single hydrophobic segment close to the C-terminus. Although such tail-anchored (TA) proteins are numerous, diverse, and functionally important, the mechanism of their transmembrane insertion and the basis of their membrane selectivity remain unclear. To address this problem, we have developed a highly specific, sensitive, and quantitative in vitro assay for the proper membranespanning topology of a model TA protein, cytochrome b5 (b5). Selective depletion from membranes of components involved in cotranslational protein translocation had no effect on either the efficiency or topology of b5 insertion. Indeed, the kinetics of transmembrane insertion into protein-free phospholipid vesicles was the same as for native ER microsomes. Remarkably, loading of either liposomes or microsomes with cholesterol to levels found in other membranes of the secretory pathway sharply and reversibly inhibited b5 transmembrane insertion. These results identify the minimal requirements for transmembrane topogenesis of a TA protein and suggest that selectivity among various intracellular compartments can be imparted by differences in their lipid composition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.