Background Nerve injuries are debilitating, leading to long-term motor deficits. Remyelination and axonal growth are supported and enhanced by growth factor and cytokines. Combination of nerve guidance conduits (NGCs) with adipose-tissue-derived multipotent mesenchymal stromal cells (AdMSCs) has been performing promising strategy for nerve regeneration. Methods 3D-printed polycaprolactone (PCL)-NGCs were fabricated. Wistar rats subjected to critical sciatic nerve damage (12-mm gap) were divided into sham, autograft, PCL (empty NGC), and PCL + MSCs (NGC multi-functionalized with 106 canine AdMSCs embedded in heterologous fibrin biopolymer) groups. In vitro, the cells were characterized and directly stimulated with interferon-gamma to evaluate their neuroregeneration potential. In vivo, the sciatic and tibial functional indices were evaluated for 12 weeks. Gait analysis and nerve conduction velocity were analyzed after 8 and 12 weeks. Morphometric analysis was performed after 8 and 12 weeks following lesion development. Real-time PCR was performed to evaluate the neurotrophic factors BDNF, GDNF, and HGF, and the cytokine and IL-10. Immunohistochemical analysis for the p75NTR neurotrophic receptor, S100, and neurofilament was performed with the sciatic nerve. Results The inflammatory environment in vitro have increased the expression of neurotrophins BDNF, GDNF, HGF, and IL-10 in canine AdMSCs. Nerve guidance conduits multi-functionalized with canine AdMSCs embedded in HFB improved functional motor and electrophysiological recovery compared with PCL group after 12 weeks. However, the results were not significantly different than those obtained using autografts. These findings were associated with a shift in the regeneration process towards the formation of myelinated fibers. Increased immunostaining of BDNF, GDNF, and growth factor receptor p75NTR was associated with the upregulation of BDNF, GDNF, and HGF in the spinal cord of the PCL + MSCs group. A trend demonstrating higher reactivity of Schwann cells and axonal branching in the sciatic nerve was observed, and canine AdMSCs were engrafted at 30 days following repair. Conclusions 3D-printed NGCs multi-functionalized with canine AdMSCs embedded in heterologous fibrin biopolymer as cell scaffold exerted neuroregenerative effects. Our multimodal approach supports the trophic microenvironment, resulting in a pro-regenerative state after critical sciatic nerve injury in rats.
Fibrin scaffold fits as a provisional platform promoting cell migration and proliferation, angiogenesis, connective tissue formation and growth factors stimulation. We evaluated a unique heterologous fibrin biopolymer as scaffold to mesenchymal stem cells (MSCs) to treat a critical-size bone defect. Femurs of 27 rats were treated with fibrin biopolymer (FBP); FBP + MSCs; and FBP + MSC differentiated in bone lineage (MSC-D). Bone repair was evaluated 03, 21 and 42 days later by radiographic, histological and scanning electron microscopy (SEM) imaging. The FBP + MSC-D association was the most effective treatment, since newly formed Bone was more abundant and early matured in just 21 days. We concluded that FBP is an excellent scaffold for MSCs and also use of differentiated cells should be encouraged in regenerative therapy researches. The FBP ability to maintain viable MSCs at Bone defect site has modified inflammatory environment and accelerating their regeneration.
Leishmaniasis is caused by intracellular parasites transmitted to vertebrates by sandfly bites. Clinical manifestations include cutaneous, mucosal or visceral involvement depending upon the host immune response and the parasite species. To assure their survival inside macrophages, these parasites developed a plethora of highly successful strategies to manipulate various immune system pathways. Considering that inflammasome activation is critical for the establishment of a protective immune response in many parasite infections, in this study we determined the transcriptome of THP-1 cells after infection with L. infantum, with a particular focus on the inflammasome components. To this end, the human cell line THP-1, previously differentiated into macrophages by PMA treatment, was infected with L. infantum promastigotes. Differentiated THP-1 cells were also stimulated with LPS to be used as a comparative parameter. The gene expression signature was determined 8 hours after by RNA-seq technique. Infected or uninfected THP-1 cells were stimulated with nigericin (NIG) to measure active caspase-1 and TNF-α, IL-6 and IL-1β levels in culture supernatants after 8, 24 and 48 hours. L. infantum triggered a gene expression pattern more similar to non-infected THP-1 cells and very distinct from LPS-stimulated cells. Some of the most up-regulated genes in L. infantum-infected cells were CDC20, CSF1, RPS6KA1, CD36, DUSP2, DUSP5, DUSP7 and TNFAIP3. Some up-regulated GO terms in infected cells included cell coagulation, regulation of MAPK cascade, response to peptide hormone stimulus, negative regulation of transcription from RNA polymerase II promoter and nerve growth factor receptor signaling pathway. Infection was not able to induce the expression of genes associated with the inflammasome signaling pathway. This finding was confirmed by the absence of caspase-1 activation and IL-1β production after 8, 24 and 48 hours of infection. Our results indicate that L. infantum was unable to activate the inflammasomes during the initial interaction with THP-1 cells.
Ethanol (EtOH) is a substantial stressor for Saccharomyces cerevisiae. Data integration from strains with different phenotypes, including EtOH stress-responsive lncRNAs, are still not available. We covered these issues seeking systems modifications that drive the divergences between higher (HT) and lower (LT) EtOH tolerant strains under their highest stress conditions. We showed that these phenotypes are neither related to high viability nor faster population rebound after stress relief. LncRNAs work on many stress-responsive systems in a strain-specific manner promoting the EtOH tolerance. Cells use membraneless RNA/protein storage and degradation systems to endure the stress harming, and lncRNAs jointly promote EtOH tolerance. CTA1 and longevity are primer systems promoting phenotype-specific gene expression. The lower cell viability and growth under stress is a byproduct of sphingolipids and inositol phosphorylceramide dampening, acerbated in HTs by sphinganine, ERG9, and squalene overloads; LTs diminish this harm by accumulating inositol 1-phosphate. The diauxic shift drives an EtOH buffering by promoting an energy burst under stress, mainly in HTs. Analysis of mutants showed genes and lncRNAs in three strains critical for their EtOH tolerance. Finally, longevity, peroxisome, energy and lipid metabolisms, RNA/protein degradation and storage systems are the main pathways driving the EtOH tolerance phenotypes.
Paracoccidioidomycosis (PCM) is a systemic mycosis, endemic in most Latin American countries, especially in Brazil, whose etiologic agent is the thermodimorphic fungus of the genus Paracoccidioides, comprising cryptic species of Paracoccidioides brasiliensis, S1, PS2, PS3 and Paracoccidioides lutzii. The mechanisms involved in the initial interaction of the fungus with cells of the innate immune response, as dendritic cells (DCs), deserve to be studied. Prostaglandins (PGs) are eicosanoids that play an important role in modulating functions of immune cells including DCs. Here we found that human immature DCs derived from the differentiation of monocytes cultured with GM-CSF and IL-4 release substantial concentrations of PGE2, which, however, were significantly inhibited after challenge with P. brasiliensis. In vitro blocking of pattern recognition receptors (PRRs) by monoclonal antibodies showed the involvement of mannose receptor (MR) in PGE2 inhibition by the fungus. In addition, phenotyping assays showed that after challenge with the fungus, DCs do not change their phenotype of immature cells to mature ones, as well as do not produce IL-12 p70 or adequate concentrations of TNF-α. Assays using exogenous PGE2 confirmed an association between PGE2 inhibition and failure of cells to phenotypically mature in response to P. brasiliensis. We conclude that a P. brasiliensis evasion mechanism exists associated to a dysregulation on DC maturation. These findings may provide novel information for the understanding of the complex interplay between the host and this fungus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.