We report results of a direct imaging survey for giant planets around 80 members of the β Pic, TW Hya, Tucana-Horologium, AB Dor, and Hercules-Lyra moving groups, observed as part of the Gemini NICI Planet-Finding Campaign. For this sample, we obtained median contrasts of ∆H=13.9 mag at 1" in combined CH 4 narrowband ADI+SDI 0 mode and median contrasts of ∆H=15.1 mag at 2" in H-band ADI mode. We found numerous (>70) candidate companions in our survey images. Some of these candidates were rejected as common-proper motion companions using archival data; we reobserved with NICI all other candidates that lay within 400 AU of the star and were not in dense stellar fields. The vast majority of candidate companions were confirmed as background objects from archival observations and/or dedicated NICI campaign followup. Four comoving companions of brown dwarf or stellar mass were discovered in this moving group sample: PZ Tel B (36±6 M Jup , 16.4±1.0 AU, Biller et al. 2010) , CD -35 2722B (31±8 M Jup , 67±4 AU, Wahhaj et al. 2011), HD 12894B (0.46±0.08 M ⊙ , 15.7±1.0 AU), and BD+07 1919C (0.20±0.03 M ⊙ , 12.5±1.4 AU). From a Bayesian analysis of the achieved H band ADI and ASDI contrasts, using power-law models of planet distributions and hot-start evolutionary models, we restrict the frequency of 1-20 M Jup companions at semi-major axes from 10-150 AU to <18% at a 95.4% confidence level using DUSTY models and to <6% at a 95.4% using COND models. Our results strongly constrain the frequency of planets within semi-major axes of 50 AU as well. We restrict the frequency of 1-20 M Jup companions at semi-major axes from 10-50 AU to <21% at a 95.4% confidence level using DUSTY models and to <7% at a 95.4% using COND models. This survey is the deepest search to date for giant planets around young moving group stars.
Abstract. Pan-STARRS, the Panoramic Survey Telescope and Rapid Response System, is a project by the Institute for Astronomy, University of Hawaii, to first develop a single wide field synoptic survey telescope (Pan-STARRS-1) followed by a system of four such telescopes. It is designed to accomplish many of the science goals envisioned by the Decadal Review for the Large Synoptic Survey Telescope (LSST). The primary mission of Pan-STARRS is the detection of potentially hazardous asteroids (PHA), secondary science objectives are a (nearly) all-sky survey, a medium-deep survey, an ultra-deep survey, and studies of transients and variable objects. This paper presents the current status of the telescope system design, with emphasis on the optics.
We report the discovery of a tight substellar companion to the young solar analog PZ Tel, a member of the β Pic moving group observed with high contrast adaptive optics imaging as part of the Gemini NICI Planet-Finding Campaign. The companion Myr for the system, we estimate a mass of 36±6 M Jup based on the Lyon/DUSTY evolutionary models. PZ Tel B is one of few young substellar companions directly imaged at orbital separations similar to those of giant planets in our own solar system. Additionally, the primary star PZ Tel A shows a 70 µm emission excess, evidence for a significant quantity of circumstellar dust that has not been disrupted by the orbital motion of the companion.Subject headings: brown dwarfs -planetary systems -stars: pre-main sequence
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.