Mepolizumab reduced the number of blood and sputum eosinophils and allowed prednisone sparing in patients who had asthma with sputum eosinophilia despite prednisone treatment. (ClinicalTrials.gov number, NCT00292877.)
It is now fully appreciated that asthma is a disease of a chronic nature resulting from intermittent or continued aeroallergen exposure leading to airway inflammation. To investigate responses to continuous antigen exposure, mice were exposed to either house dust mite extract (HDM) or ovalbumin intranasally for five consecutive days, followed by 2 days of rest, for up to seven consecutive weeks. Continuous exposure to HDM, unlike ovalbumin, elicited severe and persistent eosinophilic airway inflammation. Flow cytometric analysis demonstrated an accumulation of CD4+ lymphocytes in the lung with elevated expression of inducible costimulator a marker of T cell activation, and of T1/ST2, a marker of helper T Type 2 effector cells. We also detected increased and sustained production of helper T cell Type 2-associated cytokines by splenocytes of HDM-exposed mice on in vitro HDM recall. Histologic analysis of the lung showed evidence of airway remodeling in mice exposed to HDM, with goblet cell hyperplasia, collagen deposition, and peribronchial accumulation of contractile tissue. In addition, HDM-exposed mice demonstrated severe airway hyperreactivity to methacholine. Finally, these responses were studied for up to 9 weeks after cessation of HDM exposure. We observed that whereas airway inflammation resolved fully, the remodeling changes did not resolve and airway hyperreactivity resolved only partly.
Background
Cigarette smoke-induced chronic obstructive pulmonary disease (COPD) is a life-threatening inflammatory disorder of the lung. The development of effective therapies for COPD has been hampered by the lack of an animal model that mimics the human disease in a short time-frame.
Objectives
To create an early onset mouse model of cigarette smoke-induced COPD that develops the hallmark features of the human condition in a short time-frame. To use this model to better understand pathogenesis and the roles of macrophages and mast cells (MCs) in COPD.
Methods
Tightly controlled amounts of cigarette smoke were delivered to the airways of mice, and the development of the pathological features of COPD was assessed. The roles of macrophages and MC tryptase in pathogenesis were evaluated using depletion and in vitro studies and MC protease-6 deficient mice.
Results
After just 8 weeks of smoke exposure, wild-type mice developed chronic inflammation, mucus hypersecretion, airway remodeling, emphysema, and reduced lung function. These characteristic features of COPD were glucocorticoid-resistant and did not spontaneously resolve. Systemic effects on skeletal muscle and the heart, and increased susceptibility to respiratory infections also were observed. Macrophages and tryptase-expressing MCs were required for the development of COPD. Recombinant MC tryptase induced pro-inflammatory responses from cultured macrophages.
Conclusion
A short-term mouse model of cigarette smoke-induced COPD was developed in which the characteristic features of the disease were induced more rapidly than existing models. The model can be used to better understand COPD pathogenesis, and we show a requirement for macrophages and tryptase-expressing MCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.