This commentary presents a scientific basis for managing as one chemical class the thousands of chemicals known as PFAS (per-and polyfluoroalkyl substances). The class includes perfluoroalkyl acids, perfluoroalkylether acids, and their precursors; fluoropolymers and perfluoropolyethers; and other PFAS. The basis for the class approach is presented in relation to their physicochemical, environmental, and toxicological properties. Specifically, the high persistence, accumulation potential, and/or hazards (known and potential) of PFAS studied to date warrant treating all PFAS as a single class. Examples are provided of how some PFAS are being regulated and how some businesses are avoiding all PFAS in their products and purchasing decisions. We conclude with options for how governments and industry can apply the class-based approach, emphasizing the importance of eliminating non-essential uses of PFAS, and further developing safer alternatives and methods to remove existing PFAS from the environment.
A study was conducted to determine consumer perceptions of beef top loin steaks of known shear force and to evaluate how buying trends were modified by the tenderness and price variations of these steaks. Strip loins were cut into a 2.54-cm-thick steaks, and the center steak from each strip loin was used to determine Warner-Bratzler shear force. The remaining steaks were placed into one of the following shear force categories based on that shear force and color-coded accordingly: 1) 2.27 to 3.58 kg (Red); 2) 4.08 to 5.40 kg (White); and 3) 5.90 to 7.21 kg (Blue). Randomly recruited consumers were allowed to evaluate steaks and then purchase steaks based on their findings. A $1.10/kg price difference was placed between each category. Results of the analysis indicated that consumers were able to differentiate between the three categories of tenderness (P < .05). In addition, consumers gave higher (P < .05) juiciness and flavor ratings to Red steaks than to Blue steaks. Overall satisfaction was higher (P < .05) for Red steaks than for the other two categories of steaks. The following percentages of steaks were purchased: 1) Red, 94.6%; 2) White, 3.6%; and 3) Blue, 1.8%. These results suggest that consumers could discern between categories of tenderness and were willing to pay a premium for improved tenderness.
The objectives of this study were to determine the nutrient composition of grass-fed beef in the United States for inclusion in the USDA National Nutrient Database for Standard Reference, and to compare the fatty acid composition of grass-fed and conventionally fed (control) beef. Ground beef (GB) and strip steaks (SS) were collected on 3 separate occasions from 15 grass-fed beef producers that represented 13 different states, whereas control beef samples were collected from 3 regions (Ohio, South Dakota, and Texas) of the United States on 3 separate occasions. Concentrations of minerals, choline, vitamin B(12), and thiamine were determined for grass-fed beef samples. Grass-fed GB samples had less Mg, P, and K (P < 0.05), and more Na, Zn, and vitamin B(12) (P < 0.05) than SS samples. Fat color, marbling, and pH were assessed for grass-fed and control SS. Subjective evaluation of the SS indicated that grass-fed beef had fat that was more yellow in color than control beef. Percentages of total fat, total cholesterol, and fatty acids along with trans fatty acids and CLA were determined for grass-fed and control SS and GB. Grass-fed SS had less total fat than control SS (P = 0.001), but both grass-fed and control SS were considered lean, because their total fat content was 4.3% or less. For both GB and SS, grass-fed beef had significantly less (P = 0.001 and P = 0.023, respectively) content of MUFA and a greater content of SFA, n-3 fatty acids, CLA, and trans-vaccenic acid than did the control samples. Concentrations of PUFA, trans fatty acids, n-6 fatty acids, and cholesterol did not differ between grass-fed and control ground beef. Trans-vaccenic acid (trans-11 18:1) made up the greatest concentration of the total trans fats in grass-fed beef, whereas CLA accounted for approximately 15% of the total trans fats. Although the fatty acid composition of grass-fed and conventionally fed beef was different, conclusions on the possible effects of these differences on human health cannot be made without further investigation.
The concept of essential use is developed and applied to various uses of PFASs to determine the feasibility of elimination or substitution in each use category.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.