To date, no studies have attempted to utilize data from a combination of vital signs, heart rate variability and complexity (HRV, HRC), as well as machine learning (ML), for identifying the need for lifesaving interventions (LSIs) in trauma patients. The objectives of this study were to examine the utility of the above for identifying LSI needs and compare different LSI-associated models, with the hypothesis that an ML model would be superior in performance over multivariate logistic regression models. One hundred four patients transported from the injury scene via helicopter were selected for the study. A wireless vital signs monitor was attached to the patient's arm and used to capture physiologic data, including HRV and HRC. The power of vital sign measurements, HRV, HRC, and Glasgow Coma Scale score (GCS) to identify patients requiring LSIs was estimated using multivariate logistic regression and ML. Receiver operating characteristic (ROC) curves were also obtained. Thirty-two patients underwent 75 LSIs. After logistic regression, ROC curves demonstrated better identification for LSIs using heart rate (HR) and HRC (area under the curve [AUC] of 0.81) than using HR alone (AUC of 0.73). Likewise, ROC curves demonstrated better identification for LSIs using GCS and HRC (AUC of 0.94) than using GCS and HR (AUC of 0.92). Importantly, ROC curves demonstrated that an ML model using HR, GCS, and HRC (AUC of 0.99) had superior performance over multivariate logistic regression models for identifying the need for LSIs in trauma patients. Development of computer decision support systems should utilize vital signs, HRC, and ML in order to achieve more accurate diagnostic capabilities, such as identification of needs for LSIs in trauma patients.
Accurate and effective diagnosis of actual injury severity can be problematic in trauma patients. Inherent physiologic compensatory mechanisms may prevent accurate diagnosis and mask true severity in many circumstances. The objective of this project was the development and validation of a multiparameter machine learning algorithm and system capable of predicting the need for life-saving interventions (LSIs) in trauma patients. Statistics based on means, slopes, and maxima of various vital sign measurements corresponding to 79 trauma patient records generated over 110,000 feature sets, which were used to develop, train, and implement the system. Comparisons among several machine learning models proved that a multilayer perceptron would best implement the algorithm in a hybrid system consisting of a machine learning component and basic detection rules. Additionally, 295,994 feature sets from 82 h of trauma patient data showed that the system can obtain 89.8 % accuracy within 5 min of recorded LSIs. Use of machine learning technologies combined with basic detection rules provides a potential approach for accurately assessing the need for LSIs in trauma patients. The performance of this system demonstrates that machine learning technology can be implemented in a real-time fashion and potentially used in a critical care environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.