The diagnosis of primary ciliary dyskinesia is often confirmed with standard, albeit complex and expensive tests. In many cases, however, the diagnosis remains difficult despite the array of sophisticated diagnostic tests. There is no ‘gold standard’ reference test. Hence, a task force supported by the European Respiratory Society has developed this guideline to provide evidence-based recommendations on diagnostic testing, especially in the light of new developments in such tests, and the need for robust diagnoses of patients who might enter randomised controlled trials of treatments. The guideline is based on pre-defined questions relevant for clinical care, a systematic review of the literature, and assessment of the evidence using the GRADE (Grading of Recommendations, Assessment, Development and Evaluation) approach. It focuses on: clinical presentation, nasal nitric oxide, analysis of ciliary beat frequency and pattern by high-speed video-microscopy analysis, transmission electron microscopy, genotyping and immunofluorescence. It then used a modified Delphi survey to develop an algorithm for the use of diagnostic tests to definitively confirm and exclude the diagnosis of PCD; also to provide advice when the diagnosis is not conclusive. Finally, this guideline proposes a set of quality criteria for future research on the validity of diagnostic methods for PCD.
Primary ciliary dyskinesia (PCD) is associated with abnormal ciliary structure and function, which results in retention of mucus and bacteria in the respiratory tract, leading to chronic oto-sino-pulmonary disease, situs abnormalities and abnormal sperm motility.The diagnosis of PCD requires the presence of the characteristic clinical phenotype and either specific ultrastructural ciliary defects identified by transmission electron microscopy or evidence of abnormal ciliary function.Although the management of children affected with PCD remains uncertain and evidence is limited, it remains important to follow-up these patients with an adequate and shared care system in order to prevent future lung damage.This European Respiratory Society consensus statement on the management of children with PCD formulates recommendations regarding diagnostic and therapeutic approaches in order to permit a more accurate approach in these patients. Large well-designed randomised controlled trials, with clear description of patients, are required in order to improve these recommendations on diagnostic and treatment approaches in this disease.
In congenital bilateral absence of the vas deferens patients, the T5 allele at the polymorphic Tn locus in the CFTR (cystic fibrosis transmembrane conductance regulator) gene is a frequent disease mutation with incomplete penetrance. This T5 allele will result in a high proportion of CFTR transcripts that lack exon 9, whose translation products will not contribute to apical chloride channel activity. Besides the polymorphic Tn locus, more than 120 polymorphisms have been described in the CFTR gene. We hypothesized that the combination of particular alleles at several polymorphic loci might result in less functional or even insufficient CFTR protein. Analysis of three polymorphic loci with frequent alleles in the general population showed that, in addition to the known effect of the Tn locus, the quantity and quality of CFTR transcripts and/or proteins was affected by two other polymorphic loci: (TG)m and M470V. On a T7 background, the (TG)11 allele gave a 2.8-fold increase in the proportion of CFTR transcripts that lacked exon 9, and (TG)12 gave a sixfold increase, compared with the (TG)10 allele. T5 CFTR genes derived from patients were found to carry a high number of TG repeats, while T5 CFTR genes derived from healthy CF fathers harbored a low number of TG repeats. Moreover, it was found that M470 CFTR proteins matured more slowly, and that they had a 1.7-fold increased intrinsic chloride channel activity compared with V470 CFTR proteins, suggesting that the M470V locus might also play a role in the partial penetrance of T5 as a disease mutation. Such polyvariant mutant genes could explain why apparently normal CFTR genes cause disease. Moreover, they might be responsible for variation in the phenotypic expression of CFTR mutations, and be of relevance in other genetic diseases.
Anosmia, the loss of smell, is a common and often the sole symptom of COVID-19. The onset of the sequence of pathobiological events leading to olfactory dysfunction remains obscure. Here, we have developed a postmortem bedside surgical procedure to harvest endoscopically samples of respiratory and olfactory mucosae and whole olfactory bulbs. Our cohort of 85 cases included COVID-19 patients who died a few days after infection with SARS-CoV-2, enabling us to catch the virus while it was still replicating. We found that sustentacular cells are the major target cell type in the olfactory mucosa. We failed to find evidence for infection of olfactory sensory neurons, and the parenchyma of the olfactory bulb is spared as well. Thus, SARS-CoV-2 does not appear to be a neurotropic virus. We postulate that transient insufficient support from sustentacular cells triggers transient olfactory dysfunction in COVID-19. Olfactory sensory neurons would become affected without getting infected. ll
Primary ciliary dyskinesia (PCD) is an inherited disorder characterized by recurrent infections of the upper and lower respiratory tract, reduced fertility in males and situs inversus in about 50% of affected individuals (Kartagener syndrome). It is caused by motility defects in the respiratory cilia that are responsible for airway clearance, the flagella that propel sperm cells and the nodal monocilia that determine left-right asymmetry1. Recessive mutations that cause PCD have been identified in genes encoding components of the outer dynein arms, radial spokes and cytoplasmic pre-assembly factors of axonemal dyneins, but these mutations account for only about 50% of cases of PCD. We exploited the unique properties of dog populations to positionally clone a new PCD gene, CCDC39. We found that loss-of-function mutations in the human ortholog underlie a substantial fraction of PCD cases with axonemal disorganization and abnormal ciliary beating. Functional analyses indicated that CCDC39 localizes to ciliary axonemes and is essential for assembly of inner dynein arms and the dynein regulatory complex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.