Mean field theories of ion distributions, such as the Gouy-Chapman theory that describes the distribution near a charged planar surface, ignore the molecular-scale structure in the liquid solution. The predictions of the Gouy-Chapman theory vary substantially from our x-ray reflectivity measurements of the interface between two electrolyte solutions. Molecular dynamics simulations, which include the liquid structure, were used to calculate the potential of mean force on a single ion. We used this potential of mean force in a generalized Poisson-Boltzmann equation to predict the full ion distributions. These distributions agree with our measurements without any adjustable parameters.
Synchrotron x-ray reflectivity is used to study the interface between bulk water and bulk n-alkanes with carbon numbers 6 through 10, 12, 16, and 22. For all interfaces, except the water-hexane interface, the interfacial width disagrees with the prediction from capillary-wave theory. The variation of interfacial width with carbon number can be described by combining the capillary-wave prediction for the width with a contribution from intrinsic structure. This intrinsic structure is determined by the gyration radius for the shorter alkanes and by the bulk correlation length for the longer alkanes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.