Throughout most of the mammalian genome, genetically regulated developmental programming establishes diverse yet predictable epigenetic states across differentiated cells and tissues. At metastable epialleles (MEs), conversely, epigenotype is established stochastically in the early embryo then maintained in differentiated lineages, resulting in dramatic and systemic interindividual variation in epigenetic regulation. In the mouse, maternal nutrition affects this process, with permanent phenotypic consequences for the offspring. MEs have not previously been identified in humans. Here, using an innovative 2-tissue parallel epigenomic screen, we identified putative MEs in the human genome. In autopsy samples, we showed that DNA methylation at these loci is highly correlated across tissues representing all 3 embryonic germ layer lineages. Monozygotic twin pairs exhibited substantial discordance in DNA methylation at these loci, suggesting that their epigenetic state is established stochastically. We then tested for persistent epigenetic effects of periconceptional nutrition in rural Gambians, who experience dramatic seasonal fluctuations in nutritional status. DNA methylation at MEs was elevated in individuals conceived during the nutritionally challenged rainy season, providing the first evidence of a permanent, systemic effect of periconceptional environment on human epigenotype. At MEs, epigenetic regulation in internal organs and tissues varies among individuals and can be deduced from peripheral blood DNA. MEs should therefore facilitate an improved understanding of the role of interindividual epigenetic variation in human disease.
Micah Manary, student, 4 Haroon Saloojee, research physician, 3 Mark J Manary, professor and senior scientist 1,4,5 ABSTRACT Objective To investigate the effect of two different food supplements on body mass index (BMI) in wasted Malawian adults with HIV who were starting antiretroviral therapy. Design Randomised, investigator blinded, controlled trial. Setting Large, public clinic associated with a referral hospital in Blantyre, Malawi. Participants 491 adults with BMI <18.5.Interventions Ready-to-use fortified spread (n=245) or corn-soy blend (n=246). Main outcome measures Primary outcomes: changes in BMI and fat-free body mass after 3.5 months. Secondary outcomes: survival, CD4 count, HIV viral load, quality of life, and adherence to antiretroviral therapy. Results The mean BMI at enrolment was 16.5. After 14 weeks, patients receiving fortified spread had a greater increase in BMI and fat-free body mass than those receiving corn-soy blend: 2.2 (SD 1.9) v 1.7 (SD 1.6) (difference 0.5, 95% confidence interval 0.2 to 0.8), and 2.9 (SD 3.2) v 2.2 (SD 3.0) kg (difference 0.7 kg, 0.2 to 1.2 kg), respectively. The mortality rate was 27% for those receiving fortified spread and 26% for those receiving corn-soy blend. No significant differences in the CD4 count, HIV viral load, assessment of quality of life, or adherence to antiretroviral therapy were noted between the two groups. Conclusion Supplementary feeding with fortified spread resulted in a greater increase in BMI and lean body mass than feeding with corn-soy blend.
The family Polyomaviridae is comprised of circular double-stranded DNA viruses, several of which are associated with diseases, including cancer, in immunocompromised patients. Here we describe a novel polyomavirus recovered from the fecal microbiota of a child in Malawi, provisionally named STL polyomavirus (STLPyV). We detected STLPyV in clinical stool specimens from USA and The Gambia at up to 1% frequency. Complete genome comparisons of two STLPyV strains demonstrated 5.2% nucleotide divergence. Alternative splicing of the STLPyV early region yielded a unique form of T antigen, which we named 229T, in addition to the expected large and small T antigens. STLPyV has a mosaic genome and shares an ancestral recombinant origin with MWPyV. The discovery of STLPyV highlights a novel alternative splicing strategy and advances our understanding of the complex evolutionary history of polyomaviruses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.