The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. CitationHamilton, V.E., et al., "Evidence for widespread hydrated minerals on asteroid (101955) Bennu." Nature astronomy 3, 4 (2019): p.
Christensen, P. R.; Drouet d'Aubigny, C. Y.; Hamilton, V. E.; Reuter, D. C.; Rizk, B.; Simon, A. A.; Asphaug, E.; Bandfield, J. L.; Barnouin, O. S.; Barucci, M. A.; Bierhaus, E. B.; Binzel, R. P.; Bottke, W. F.; Bowles, N. E.; Campins, H.; Clark, B. C.; Clark, B. E.; Connolly, H. C.; Daly, M. G.; Leon, J. de; Delbo', M.; Deshapriya, J. D. P.; Elder, C. M.; Fornasier, S.; Hergenrother, C. W.; Howell, E. S.; Jawin, E. R.; Kaplan, H. H.; Kareta, T. R.; Le Corre, L.; Li, J.-Y.; Licandro, J.; Lim, L. F.; Michel, P.; Molaro, J.; Nolan, M. C.; Pajola, M.; Popescu, M.; Garcia, J. L. Rizos; Ryan, A.; Schwartz, S. R.; Shultz, N.; Siegler, M. A.; Smith, P. H.; Tatsumi, E.; Thomas, C. A.; Walsh, K. J.; Wolner, C. W. V.; Zou, X.-D. and Lauretta, D. S. (2019). Properties of rubble-pile asteroid (101955) Bennu from OSIRIS-REx imaging and thermal analysis. Nature Astronomy, 3 pp. 341-351. For guidance on citations see FAQs.Length of main text: 2956 words Length of methods: 3605 words Length of legends: 565 words Number of references: 53 main text, 69 including methods and supplementary information (refs 67 to 69 are cited in the SI only) , we show that asteroid (101955) Bennu's surface is globally rough, dense with boulders and low in albedo. The number of boulders is surprising given Bennu's moderate thermal inertia, suggesting that simple models linking thermal inertia to particle size do not adequately capture the complexity relating these properties. At the same time, we find evidence for a wide range of particle sizes with distinct albedo characteristics. Our findings imply that ages of Bennu's surface particles span from the disruption of the asteroid's parent body (boulders) to recent in situ production (micron-scale particles).
The Open University's repository of research publications and other research outputs The dynamic geophysical environment of (101955) Bennu based on OSIRIS-REx measurements
The OSIRIS-REx Thermal Emission Spectrometer (OTES) will provide remote measurements of mineralogy and thermophysical properties of Bennu to map its surface, help select the OSIRIS-REx sampling site, and investigate the Yarkovsky effect. OTES is a Fourier Transform spectrometer covering the spectral range 5.71-100 µm (1750-100 cm -1 ) with a spectral sample interval of 8.66 cm -1 and a 6.5-mrad field of view. The OTES telescope is a 15.2-cm diameter Cassegrain telescope that feeds a flat-plate Michelson moving mirror mounted on a linear voice-coil motor assembly. A single uncooled deuterated L-alanine doped triglycine sulfate (DLATGS) pyroelectric detector is used to sample the interferogram every two seconds. Redundant ~0.855 µm laser diodes are used in a metrology interferometer to provide precise moving mirror control and IR sampling at 772 Hz. The beamsplitter is a 38-mm diameter, 1-mm thick chemical vapor deposited diamond with an antireflection microstructure to minimize surface reflection. An internal calibration cone blackbody target provides radiometric calibration. The radiometric precision in a single spectrum is ≤2.2 × 10 -8 W cm -2 sr -1 /cm -1 between 300 and 1350 cm -1 . The absolute integrated radiance error is <1% for scene temperatures ranging from 150 to 380 K. The overall OTES envelope size is 37.5 × 28.9 × 52.2 cm, and the mass is 6.27 kg. The power consumption is 10.8 W average. The OTES was developed by Arizona State University with Moog Broad Reach developing the electronics. OTES was integrated, tested, and radiometrically calibrated on the Arizona State University campus in Tempe, AZ.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.