IMPORTANCE In patients who undergo mechanical ventilation during surgery, the ideal tidal volume is unclear.OBJECTIVE To determine whether low-tidal-volume ventilation compared with conventional ventilation during major surgery decreases postoperative pulmonary complications. DESIGN, SETTING, AND PARTICIPANTSSingle-center, assessor-blinded, randomized clinical trial of 1236 patients older than 40 years undergoing major noncardiothoracic, nonintracranial surgery under general anesthesia lasting more than 2 hours in a tertiary hospital in Melbourne, Australia, from February 2015 to February 2019. The last date of follow-up was February 17, 2019.INTERVENTIONS Patients were randomized to receive a tidal volume of 6 mL/kg predicted body weight (n = 614; low tidal volume group) or a tidal volume of 10 mL/kg predicted body weight (n = 592; conventional tidal volume group). All patients received positive end-expiratory pressure (PEEP) at 5 cm H 2 O. MAIN OUTCOMES AND MEASURESThe primary outcome was a composite of postoperative pulmonary complications within the first 7 postoperative days, including pneumonia, bronchospasm, atelectasis, pulmonary congestion, respiratory failure, pleural effusion, pneumothorax, or unplanned requirement for postoperative invasive or noninvasive ventilation. Secondary outcomes were postoperative pulmonary complications including development of pulmonary embolism, acute respiratory distress syndrome, systemic inflammatory response syndrome, sepsis, acute kidney injury, wound infection (superficial and deep), rate of intraoperative need for vasopressor, incidence of unplanned intensive care unit admission, rate of need for rapid response team call, intensive care unit length of stay, hospital length of stay, and in-hospital mortality.RESULTS Among 1236 patients who were randomized, 1206 (98.9%) completed the trial (mean age, 63.5 years; 494 [40.9%] women; 681 [56.4%] undergoing abdominal surgery). The primary outcome occurred in 231 of 608 patients (38%) in the low tidal volume group compared with 232 of 590 patients (39%) in the conventional tidal volume group (difference, −1.3% [95% CI, −6.8% to 4.2%]; risk ratio, 0.97 [95% CI, 0.84-1.11]; P = .64). There were no significant differences in any of the secondary outcomes.CONCLUSIONS AND RELEVANCE Among adult patients undergoing major surgery, intraoperative ventilation with low tidal volume compared with conventional tidal volume, with PEEP applied equally between groups, did not significantly reduce pulmonary complications within the first 7 postoperative days.
BackgroundThe use of telemedicine in acute stroke care can facilitate rapid access to treatment, but the work required to embed any new technology into routine practice is often hidden, and can be challenging. We aimed to collate recommendations and resources to support telestroke implementation.MethodsSystematic search of healthcare databases and the Internet to identify descriptions of the implementation of telestroke projects; interviews with key stakeholders during the development of one UK telestroke network. Supporting documentation from existing projects was analysed to construct a framework of implementation stages and tasks, and a toolkit of documents. Interviews and literature were analysed with other data sources using Normalisation Process Theory as described in the e-Health Implementation Toolkit.Results61 telestroke projects were identified and contacted. Twenty projects provided documents, 13 with published research detailing four stages of telestroke system development, implementation, use, and evaluation. Interviewees identified four main challenges: engaging and maintaining the commitment of a wide range of stakeholders across multiple organisations; addressing clinicians perceptions of evidence, workload, and payback; managing clinical and technical workability across diverse settings; and monitoring how the system is used and reconfigured by users.ConclusionsInformation to guide telestroke implementation is sparse, but available. By using multiple sources of data, sufficient information was collated to construct a web-based toolkit detailing implementation tasks, resources and challenges in the development of a telestroke system for assessment and thrombolysis delivery in acute care. The toolkit is freely available online.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.