A comprehensive differential gene expression screen on a panel of 54 breast tumors and >200 normal tissue samples using DNA microarrays revealed 15 genes specifically overexpressed in breast cancer. One of the most prevalent genes found was trichorhinophalangeal syndrome type 1 (TRPS-1), a gene previously shown to be associated with three rare autosomal dominant genetic disorders known as the trichorhinophalangeal syndromes. A number of corroborating methodologies, including in situ hybridization, e-Northern analysis using ORF EST (ORESTES) and Unigene EST abundance analysis, immunoblot and immunofluorescence analysis of breast tumor cell lines, and immunohistochemistry, confirmed the microarray findings. Immunohistochemistry analysis found TRPS-1 protein expressed in >90% of early-and late-stage breast cancer, including ductal carcinoma in situ and invasive ductal, lobular, and papillary carcinomas. The TRPS-1 gene is also immunogenic with processed and presented peptides activating T cells found after vaccination of HLA-A2.1 transgenic mouse. Human T cell lines from HLA-A*0201 ؉ female donors exhibiting TRPS-1-specific cytotoxic T lymphocyte activity could also be generated.gene expression profiling ͉ immunohistochemistry
One of the challenges of developing influenza A vaccines is the diversity of antigenically distinct isolates. Previously, a novel hemagglutinin (HA) for H5N1 influenza was derived from a methodology termed computationally optimized broadly reactive antigen (COBRA). This COBRA HA elicited a broad antibody response against H5N1 isolates from different clades. We now report the development and characterization of a COBRA-based vaccine for both seasonal and pandemic H1N1 influenza virus isolates. Nine prototype H1N1 COBRA HA proteins were developed and tested in mice using a virus-like particle (VLP) format for the elicitation of broadly reactive, functional antibody responses and protection against viral challenge. These candidates were designed to recognize H1N1 viruses isolated within the last 30 years. In addition, several COBRA candidates were designed based on sequences of H1N1 viruses spanning the past 100 years, including modern pandemic H1N1 isolates. Four of the 9 H1N1 COBRA HA proteins (X1, X3, X6, and P1) had the broadest hemagglutination inhibition (HAI) activity against a panel of 17 H1N1 viruses. These vaccines were used in cocktails or prime-boost combinations. The most effective regimens that both elicited the broadest HAI response and protected mice against a pandemic H1N1 challenge were vaccines that contained the P1 COBRA VLP and either the X3 or X6 COBRA VLP vaccine. These mice had little or no detectable viral replication, comparable to that observed with a matched licensed vaccine. This is the first report describing a COBRA-based HA vaccine strategy that elicits a universal, broadly reactive, protective response against seasonal and pandemic H1N1 isolates. IMPORTANCEUniversal influenza vaccine approaches have the potential to be paradigm shifting for the influenza vaccine field, with the goal of replacing the current standard of care with broadly cross-protective vaccines. We have used COBRA technology to develop an HA head-based strategy that elicits antibodies against many H1 strains that have undergone genetic drift and has potential as a "subtype universal" vaccine. Nine HA COBRA candidates were developed, and these vaccines were used alone, in cocktails or in prime-boost combinations. The most effective regimens elicited the broadest hemagglutination inhibition (HAI) response against a panel of H1N1 viruses isolated over the past 100 years. This is the first report describing a COBRA-based HA vaccine strategy that elicits a broadly reactive response against seasonal and pandemic H1N1 isolates. Influenza vaccine efficacy is constantly undermined by antigenic variation in the circulating viral strains, particularly in the hemagglutinin (HA) and neuraminidase (NA) proteins. Current influenza vaccination strategies rely on changing the HA and NA components of the annual human influenza vaccine to ensure that they antigenically match circulating influenza strains (1, 2). Developing an influenza vaccine that is capable of providing broad and long-lasting protective antibody responses r...
Respiratory syncytial virus (RSV) is the principal cause of bronchiolitis in infants and a significant healthcare problem. The RSV Glycoprotein (G) mediates attachment of the virus to the cell membrane, which facilitates interaction of the RSV Fusion (F) protein with nucleolin, thereby triggering fusion of the viral and cellular membranes. However, a host protein ligand for G has not yet been identified. Here we show that CX3CR1 is expressed in the motile cilia of differentiated human airway epithelial (HAE) cells, and that CX3CR1 co-localizes with RSV particles. Upon infection, the distribution of CX3CR1 in these cells is significantly altered. Complete or partial deletion of RSV G results in viruses binding at least 72-fold less efficiently to cells, and reduces virus replication. Moreover, an antibody targeting an epitope near the G protein’s CX3CR1-binding motif significantly inhibits binding of the virus to airway cells. Given previously published evidence of the interaction of G with CX3CR1 in human lymphocytes, these findings suggest a role for G in the interaction of RSV with ciliated lung cells. This interpretation is consistent with past studies showing a protective benefit in immunizing against G in animal models of RSV infection, and would support targeting the CX3CR1-G protein interaction for prophylaxis or therapy. CX3CR1 expression in lung epithelial cells may also have implications for other respiratory diseases such as asthma.
Respiratory syncytial virus (RSV) remains a major cause of morbidity and mortality in infants and the elderly and is a continuing challenge for vaccine development. A murine T helper cell (Th) type 2 response associates with enhanced lung pathology, which has been observed in past infant trials using formalin-inactivated RSV vaccine. In this study, we have engineered an optimized plasmid DNA vector expressing the RSV fusion (F) protein (DNA-F). DNA-F was as effective as live RSV in mice at inducing neutralizing antibody and cytotoxic T lymphocyte responses, protection against infection, and high mRNA expression of lung interferon γ after viral challenge. Furthermore, a DNA-F boost could switch a preestablished anti-RSV Th2 response towards a Th1 response. Critical elements for the optimization of the plasmid constructs included expression of a secretory form of the F protein and the presence of the rabbit β-globin intron II sequence upstream of the F-encoding sequence. In addition, anti-F systemic immune response profile could be modulated by the route of DNA-F delivery: intramuscular immunization resulted in balanced responses, whereas intradermal immunization resulted in a Th2 type of response. Thus, DNA-F immunization may provide a novel and promising RSV vaccination strategy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.