Heritability is essential for understanding the biological causes of disease but requires laborious patient recruitment and phenotype ascertainment. Electronic health records (EHRs) passively capture a wide range of clinically relevant data and provide a resource for studying the heritability of traits that are not typically accessible. EHRs contain next-of-kin information collected via patient emergency contact forms, but until now, these data have gone unused in research. We mined emergency contact data at three academic medical centers and identified 7.4 million familial relationships while maintaining patient privacy. Identified relationships were consistent with genetically derived relatedness. We used EHR data to compute heritability estimates for 500 disease phenotypes. Overall, estimates were consistent with the literature and between sites. Inconsistencies were indicative of limitations and opportunities unique to EHR research. These analyses provide a validation of the use of EHRs for genetics and disease research.
This manuscript is focused on the use of connected sensor technologies, including wearables and other biosensors, for a wide range of health services, such as collecting digital endpoints in clinical trials and remotely monitoring patients in clinical care. The adoption of these technologies poses five risks that currently exceed our abilities to evaluate and secure these products: (1) validation, (2) security practices, (3) data rights and governance, (4) utility and usability; and (5) economic feasibility. In this manuscript we conduct a landscape analysis of emerging evaluation frameworks developed to better manage these risks, broadly in digital health. We then propose a framework specifically for connected sensor technologies. We provide a pragmatic guide for how to put this evaluation framework into practice, taking lessons from concepts in drug and nutrition labels to craft a connected sensor technology label.npj Digital Medicine (2020) 3:37 ; https://doi.
Background Differences in autonomic nervous system function, measured by heart rate variability (HRV), have been observed between patients with inflammatory bowel disease and healthy control patients and have been associated in cross-sectional studies with systemic inflammation. High HRV has been associated with low stress. Methods Patients with ulcerative colitis (UC) were followed for 9 months. Their HRV was measured every 4 weeks using the VitalPatch, and blood was collected at baseline and every 12 weeks assessing cortisol, adrenocorticotropin hormone, interleukin-1β, interleukin-6, tumor necrosis factor-α, and C-reactive protein (CRP). Stool was collected at enrollment and every 6 weeks for fecal calprotectin. Surveys assessing symptoms, stress, resilience, quality of life, anxiety, and depression were longitudinally collected. Results Longitudinally evaluated perceived stress was significantly associated with systemic inflammation (CRP, P = 0.03) and UC symptoms (P = 0.02). There was a significant association between HRV and stress (low-frequency to high-frequency power [LFHF], P = 0.04; root mean square of successive differences [RMSSD], P = 0.04). The HRV was associated with UC symptoms (LFHF, P = 0.03), CRP (high frequency, P < 0.001; low frequency, P < 0.001; RMSSD, P < 0.001), and fecal calprotectin (high frequency, P < 0.001; low frequency, P < 0.001; RMSSD, P < 0.001; LFHF, P < 0.001). Significant changes in HRV indices from baseline developed before the identification of a symptomatic or inflammatory flare (P < 0.001). Conclusions Longitudinally evaluated HRV was associated with UC symptoms, inflammation, and perceived and physiological measures of stress. Significant changes in HRV were observed before the development of symptomatic or inflammatory flare.
Key Points Question Can the effectiveness of second-line treatment of type 2 diabetes after initial therapy with metformin be characterized via an open collaborative research network? Findings In this analysis of data from more than 246 million patients in multiple cohorts, treatment with dipeptidyl peptidase 4 inhibitors compared with sulfonylureas and thiazolidinediones did not differ in reducing hemoglobin A 1c levels or hazard of kidney disorders. In a meta-analysis, sulfonylureas compared with dipeptidyl peptidase 4 inhibitors were associated with a small increased hazard of myocardial infarction and eye disorders in patients with type 2 diabetes. Meaning Large-scale characterization of the effectiveness of type 2 diabetes therapy across nations through an open collaborative research network aligns with the 2017 recommendation of the American Association of Clinical Endocrinologists and American College of Endocrinology in type 2 diabetes management recommending dipeptidyl peptidase 4 inhibitors over sulfonylureas in patients with diabetes for whom metformin was the first-line treatment.
Post-acute sequelae of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are debilitating, clinically heterogeneous and of unknown molecular etiology. A transcriptome-wide investigation was performed in 165 acutely infected hospitalized individuals who were followed clinically into the post-acute period. Distinct gene expression signatures of post-acute sequelae were already present in whole blood during acute infection, with innate and adaptive immune cells implicated in different symptoms. Two clusters of sequelae exhibited divergent plasma-cell-associated gene expression patterns. In one cluster, sequelae associated with higher expression of immunoglobulin-related genes in an anti-spike antibody titer-dependent manner. In the other, sequelae associated independently of these titers with lower expression of immunoglobulin-related genes, indicating lower non-specific antibody production in individuals with these sequelae. This relationship between lower total immunoglobulins and sequelae was validated in an external cohort. Altogether, multiple etiologies of post-acute sequelae were already detectable during SARS-CoV-2 infection, directly linking these sequelae with the acute host response to the virus and providing early insights into their development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.