The Jupiter Energetic Particle Detector Instruments (JEDI) on the Juno Jupiter polar-orbiting, atmosphere-skimming, mission to Jupiter will coordinate with the several other space physics instruments on the Juno spacecraft to characterize and understand the space environment of Jupiter's polar regions, and specifically to understand the generation of Jupiter's powerful aurora. JEDI comprises 3 nearly-identical instruments and measures at minimum the energy, angle, and ion composition distributions of ions with energies from H:20 keV and O: 50 keV to > 1 MeV, and the energy and angle distribution of electrons from < 40 to > 500 keV. Each JEDI instrument uses microchannel plates (MCP) and thin foils to measure the times of flight (TOF) of incoming ions and the pulse height associated with the interaction of ions with the foils, and it uses solid state detectors (SSD's) to measure the total energy (E) of both the ions and the electrons. The MCP anodes and the SSD arrays are configured to determine the directions of arrivals of the incoming charged particles. The instruments also use fast triple coincidence and optimum shielding to suppress penetrating background radiation and incoming UV foreground. Here we describe the science objectives of JEDI, the science and measurement requirements, the challenges that the JEDI team had in meeting these requirements, the design and operation of the JEDI instruments, their calibrated performances, the JEDI inflight and ground operations, and the initial measurements of the JEDI instruments in interplanetary space following the Juno launch on 5 August 2011. Juno will begin its prime science operations, comprising 32 orbits with dimensions 1.1 × 40 RJ, in mid-2016.
The Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) on the two Van Allen Probes spacecraft is the magnetosphere ring current instrument that will provide data for answering the three over-arching questions for the Van Allen Probes Program: RBSPICE will determine "how space weather creates the storm-time ring current around Earth, how that ring current supplies and supports the creation of the radiation belt populations," and how the ring current is involved in radiation belt losses. RBSPICE is a time-of-flight versus total energy instrument that measures ions over the energy range from ∼20 keV to ∼1 MeV. RBSPICE will also measure electrons over the energy range ∼25 keV to ∼1 MeV in order to provide instrument background information in the radiation belts. A description of the instrument and its data products are provided in this chapter.
This paper describes the science motivation, measurement objectives, performance requirements, detailed design, approach and implementation, and calibration of the four Hot Plasma Composition Analyzers (HPCA) for the Magnetospheric Multiscale mission. The HPCA is based entirely on electrostatic optics combining an electrostatic energy analyzer with a carbon-foil based time-of-flight analyzer. In order to fulfill mission requirements, the HPCA incorporates three unique technologies that give it very wide dynamic range capabilities essential to measuring minor ion species in the presence of extremely high proton fluxes found in the region of magnetopause reconnection. Dynamic range is controlled primarily by a novel radio frequency system analogous to an RF mass spectrometer. The RF, in combination with capabilities for high TOF event processing rates and high current micro-channel plates, ensures the dynamic range and sensitivity needed for accurate measurements of ion fluxes between ∼1 eV and 40 keV that are expected in the region of In order to calibrate the four HPCA instruments we have developed a unique ion calibration system. The system delivers a multi-species beam resolved to M/ M ∼ 100 and current densities between 0.05 and 200 pA/cm 2 with a stability of ±5 %. The entire system is controlled by a dedicated computer synchronized with the HPCA ground support equipment. This approach results not only in accurate calibration but also in a comprehensive set of coordinated instrument and auxiliary data that makes analysis straightforward and ensures archival of all relevant data.
cles over a very broad energy range, as well as coordinated management, science operations, data processing, and scientific analysis. Together, ISIS observations allow us to explore the mechanisms of energetic particles dynamics, including their: (1) Originsdefining the seed populations and physical conditions necessary for energetic particle acceleration; (2) Acceleration-determining the roles of shocks, reconnection, waves, and turbulence in accelerating energetic particles; and (3) Transport-revealing how energetic particles propagate from the corona out into the heliosphere. The two ISIS Energetic Particle Instruments measure lower (EPI-Lo) and higher (EPI-Hi) energy particles. EPI-Lo measures ions and ion composition from ∼20 keV/nucleon-15 MeV total energy and electrons from ∼25-1000 keV. EPI-Hi measures ions from ∼1-200 MeV/nucleon and electrons from ∼0.5-6 MeV. EPI-Lo comprises 80 tiny apertures with fields-of-view (FOVs) that sample over nearly a complete hemisphere, while EPI-Hi combines three telescopes that together provide five large-FOV apertures. ISIS observes continuously inside of 0.25 AU with a high data collection rate and burst data (EPI-Lo) coordinated with the rest of the SPP payload; outside of 0.25 AU, ISIS runs in low-rate science mode whenever feasible to capture as complete a record as possible of the solar energetic particle environment and provide calibration and continuity for measurements closer in to the Sun. The ISIS Science Operations Center plans and executes commanding, receives and analyzes all ISIS data, and coordinates science observations and analyses with the rest of the SPP science investigations. Together, ISIS' unique observations on SPP will enable the discovery, untangling, and understanding of the important physical processes that govern energetic particles in the innermost regions of our heliosphere, for the first time. This paper summarizes the ISIS investigation at the time of the SPP mission Preliminary
The Energetic Particle Detector (EPD) Investigation is one of 5 fields-andparticles investigations on the Magnetospheric Multiscale (MMS) mission. MMS comprises 4 spacecraft flying in close formation in highly elliptical, near-Earth-equatorial orbits targeting understanding of the fundamental physics of the important physical process called magnetic reconnection using Earth's magnetosphere as a plasma laboratory. EPD comprises two sensor types, the Energetic Ion Spectrometer (EIS) with one instrument on each of the 4 spacecraft, and the Fly's Eye Energetic Particle Spectrometer (FEEPS) with 2 instruments on each of the 4 spacecraft. EIS measures energetic ion energy, angle and elemental compositional distributions from a required low energy limit of 20 keV for protons and 45 keV for oxygen ions, up to > 0.5 MeV (with capabilities to measure up to > 1 MeV). FEEPS measures instantaneous all sky images of energetic electrons from 25 keV to > 0.5 MeV, and also measures total ion energy distributions from 45 keV to > 0.5 MeV to be used in conjunction with EIS to measure all sky ion distributions. In this report we describe the EPD investigation and the details of the EIS sensor. Specifically we describe EPD-level science objectives, the science and measurement requirements, and the challenges that the EPD team had in meeting these requirements. Here we also describe the design and operation of the EIS instruments, their calibrated performances, and the EIS in-flight and ground operations. Blake et al. (The Flys Eye Energetic Particle Spectrometer (FEEPS) contribution to the Energetic Particle Detector (EPD) investigation of the Magnetospheric Magnetoscale (MMS) Mission, this issue) describe the design and operation of the FEEPS instruments, their calibrated performances, and the FEEPS in-flight and ground operations. The MMS spacecraft will launch in early 2015, and over its 2-year mission will provide comprehensive measurements of magnetic reconnection at Earth's magnetopause during the 18 months that comprise orbital phase 1, and magnetic reconnection within Earth's magnetotail during the about 6 months that comprise orbital phase 2.Keywords NASA mission · Magnetospheric multiscale · Magnetosphere · Magnetic reconnection · Space plasma · Particle acceleration 1 EPD Introduction, Background, Science Goals Background and OverviewThe purpose of NASA's Magnetospheric Multiscale (MMS) mission, as described by Burch et al. (this issue), is to provide understanding of the fundamental physics of the critical energy conversion process of magnetized space plasmas called Magnetic Reconnection. Magnetic reconnection is a spatially localized process that converts magnetic energy that is derived from the flow energy of ionized gases (plasmas), into particle energy in the form of different forms of plasma flow, heating, and particle energization To provide that understanding, the MMS mission comprises 4 spacecraft that fly in formation (10 to 400 km apart) in highly elliptical orbits (1.2 × 12 to 1.2 × 25 RE), thereby ob...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.