2-Amino-4-oxo-6-substituted pyrrolo[2,3-d]pyrimidine antifolates with a thienoyl side chain (compounds 1–3, respectively) were synthesized for comparison with compound 4, the previous lead compound of this series. Conversion of hydroxyl acetylen-thiophene carboxylic esters to thiophenyl-α-bromomethylketones and condensation with 2,4-diamino-6-hydroxypyrimidine afforded the 6-substituted pyrrolo[2,3-d]pyrimidine compounds of type 18 and 19. Coupling with L-glutamate diethyl ester, followed by saponification, afforded 1–3. Compound 3 selectively inhibited proliferation of cells expressing folate receptors (FRs) α or β, or the proton-coupled folate transporter (PCFT), including human tumor cells KB and IGROV1 much more potently than 4. Compound 3 was more inhibitory than 4 toward β-glycinamide ribonucleotide formyltransferase (GARFTase). Both 3 and 4 depleted cellular ATP pools. In SCID mice with IGROV1 tumors, 3 was more efficacious than 4. Collectively, our results show potent antitumor activity for 3 in vitro and in vivo, associated with its selective membrane transport by FRs and PCFT over RFC and inhibition of GARFTase, clearly establishing the 3-atom bridge as superior to the 1, 2 and 4-atom bridge lengths for the activity of this series.
The proton-coupled folate transporter (PCFT) is a folate-proton symporter with an acidic pH optimum, approximating the microenvironments of solid tumors. We tested 6-substituted pyrrolo [2,3-d]pyrimidine antifolates with one to six carbons in the bridge region for inhibition of proliferation in isogenic Chinese hamster ovary (CHO) and HeLa cells expressing PCFT or reduced folate carrier (RFC). Only analogs with three and four bridge carbons (N-͕4-[3-2-amino-4-oxo-4,7-, respectively) were inhibitory, with 2 Ͼ Ͼ 3. Activity toward RFC-expressing cells was negligible. Compound 2 and pemetrexed (Pmx) competed with [ 3 H]methotrexate for PCFT transport in PCFT-expressing CHO (R2/hPCFT4) cells from pH 5.5 to 7.2; inhibition increased with decreasing pH. In Xenopus laevis oocytes microinjected with PCFT cRNA, uptake of 2, like that of Pmx, was electrogenic. Cytotoxicity of 2 toward R2/ hPCFT4 cells was abolished in the presence of adenosine or 5-amino-4-imidazolecarboxamide, suggesting that glycinamide ribonucleotide formyltransferase (GARFTase) in de novo purine biosynthesis was the primary target. Compound 2 decreased GTP and ATP pools by ϳ50 and 75%, respectively. By an in situ GARFTase assay, 2 was ϳ20-fold more inhibitory toward intracellular GARFTase than toward cell growth or colony formation. Compound 2 irreversibly inhibited clonogenicity, although this required at least 4 h of exposure. Our results document the potent antiproliferative activity of compound 2, attributable to its efficient cellular uptake by PCFT, resulting in inhibition of GARFTase and de novo purine biosynthesis. Furthermore, they establish the feasibility of selective chemotherapy drug delivery via PCFT over RFC, a process that takes advantage of a unique biological feature of solid tumors.
The proton-coupled folate transporter (PCFT) is a proton-folate symporter with an acidic pH optimum. By real-time reverse transcription-polymerase chain reaction, PCFT was expressed in the majority of 53 human tumor cell lines, with the highest levels in Caco-2 (colorectal adenocarcinoma), SKOV3 (ovarian), and HepG2 (hepatoma) cells. A novel 6-substituted pyrrolo [2,3-d]pyrimidine thienoyl antifolate (compound 1) was used to establish whether PCFT can deliver cytotoxic drug under pH conditions that mimic the tumor microenvironment. Both 1 and pemetrexed (Pmx) inhibited proliferation of R1-11-PCFT4 HeLa cells engineered to express PCFT without the reduced folate carrier (RFC) and of HepG2 cells expressing both PCFT and RFC. Unlike Pmx, 1 did not inhibit proliferation of R1-11-RFC6 HeLa cells, which express RFC without PCFT. Treatment of R1-11-PCFT4 cells at pH 6.8 with 1 or Pmx inhibited colony formation with dose and time dependence. Transport of [ 3 H]compound 1 into R1-11-PCFT4 and HepG2 cells was optimal at pH 5.5 but appreciable at pH 6.8. At pH 6.8, [3 H]compound 1 was metabolized to 3 H-labeled polyglutamates. Glycinamide ribonucleotide formyltransferase (GARFTase) in R1-11-PCFT4 cells was inhibited by 1 at pH 6.8, as measured by an in situ GARFTase assay, and was accompanied by substantially reduced ATP levels. Compound 1 caused S-phase accumulation and a modest level of apoptosis. An in vivo efficacy trial with severe combined immunodeficient mice implanted with subcutaneous HepG2 tumors showed that compound 1 was active. Our findings suggest exciting new therapeutic possibilities to selectively deliver novel antifolate drugs via transport by PCFT over RFC by exploiting the acidic tumor microenvironment.
Purpose: To determine the possibility of synergistic antileukemic activity and the underlying molecular mechanisms associated with cytarabine combined with valproic acid (VPA; a histone deacetylase inhibitor and a Food and Drug Administration-licensed drug for treating both children and adults with epilepsy) in pediatric acute myeloid leukemia (AML).Experimental Design: The type and extent of antileukemic interactions between cytarabine and VPA in clinically relevant pediatric AML cell lines and diagnostic blasts from children with AML were determined by MTT assays and standard isobologram analyses. The effects of cytarabine and VPA on apoptosis and cell cycle distributions were determined by flow cytometry analysis and caspase enzymatic assays. The effects of the two agents on DNA damage and Bcl-2 family proteins were determined by Western blotting.Results: We showed synergistic antileukemic activities between cytarabine and VPA in four pediatric AML cell lines and nine diagnostic AML blast samples. t(8;21) AML blasts were significantly more sensitive to VPA and showed far greater sensitivities to combined cytarabine and VPA than non-t(8;21) AML cases. Cytarabine and VPA cooperatively induced DNA double-strand breaks, reflected in induction of γH2AX and apoptosis, accompanied by activation of caspase-9 and caspase-3. Further, VPA induced Bim expression and short hairpin RNA knockdown of Bim resulted in significantly decreased apoptosis induced by cytarabine and by cytarabine plus VPA.Conclusions: Our results establish global synergistic antileukemic activity of combined VPA and cytarabine in pediatric AML and provide compelling evidence to support the use of VPA in the treatment of children with this deadly disease. Clin Cancer Res; 16(22); 5499-510. ©2010 AACR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.