There is unmet need for chemical tools to explore the role of the Mediator complex in human pathologies ranging from cancer to cardiovascular disease. Here we determine that CCT251545, a small molecule WNT-pathway inhibitor discovered through cell-based screening, is a potent and selective chemical probe for the human Mediator complex-associated protein kinases CDK8 and CDK19 with >100-fold selectivity over 291 other kinases. X-ray crystallography demonstrates a Type 1 binding mode involving insertion of the CDK8 C-terminus into the ligand binding site. InReprints and permissions information is available online at http://www.nature.com/reprints/index.html.Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use
The
Mediator complex-associated cyclin-dependent kinase CDK8 has
been implicated in human disease, particularly in colorectal cancer
where it has been reported as a putative oncogene. Here we report
the discovery of 109 (CCT251921), a potent, selective,
and orally bioavailable inhibitor of CDK8 with equipotent affinity
for CDK19. We describe a structure-based design approach leading to
the discovery of a 3,4,5-trisubstituted-2-aminopyridine series and
present the application of physicochemical property analyses to successfully
reduce in vivo metabolic clearance, minimize transporter-mediated
biliary elimination while maintaining acceptable aqueous solubility.
Compound 109 affords the optimal compromise of in vitro
biochemical, pharmacokinetic, and physicochemical properties and is
suitable for progression to animal models of cancer.
Drug resistance mediated by clonal evolution is arguably the biggest problem in cancer therapy today. However, evolving resistance to one drug may come at a cost of decreased fecundity or increased sensitivity to another drug. These evolutionary trade-offs can be exploited using 'evolutionary steering' to control the tumour population and delay resistance. However, recapitulating cancer evolutionary dynamics experimentally remains challenging. Here, we present an approach for evolutionary steering based on a combination of single-cell barcoding, large populations of 10 8-10 9 cells grown without re-plating, longitudinal nondestructive monitoring of cancer clones, and mathematical modelling of tumour evolution. We demonstrate evolutionary steering in a lung cancer model, showing that it shifts the clonal composition of the tumour in our favour, leading to collateral sensitivity and proliferative costs. Genomic profiling revealed some of the mechanisms that drive evolved sensitivity. This approach allows modelling evolutionary steering strategies that can potentially control treatment resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.