Despite improvements in early detection and treatment, cancer remains a major cause of mortality. Death from cancer is largely due to metastasis, which results in spreading of tumor cells to other parts of the body. The metastatic process is poorly understood, is often unpredictable, and usually results in incurable disease. There are no therapies specifically designed to target metastases or to block the metastatic process. Development and pre-clinical testing of new cancer therapies is limited by the scarcity of in vivo models that authentically reproduce human tumor growth and metastatic progression. Here, we report development of novel models for breast tumor growth and metastasis, which exist in the form of transplantable tumors derived directly from patients. These tumor grafts not only represent the diversity of human breast cancer, but also maintain essential features of the original patients’ tumors, including histopathology, clinical markers, hormone responsiveness, and metastasis to specific sites. Genomic features, such as gene expression profiles and DNA copy number variants, are also well maintained between the original specimens and the tumor grafts. We found that co-engraftment of primary human mesenchymal stem cells with tumor grafts helps to maintain the phenotypic stability of the tumors, and increases tumor growth by promoting angiogenesis and reducing necrosis. Remarkably, tumor engraftment is also a prognostic indicator of disease outcome: newly diagnosed women whose primary breast tumor successfully engrafted in mouse mammary glands had significantly reduced survival compared to patients whose tumors did not engraft. Thus, orthotopic breast tumor grafting marks a first step toward personalized medicine by replicating the diversity of human breast cancer through patient-centric models for tumor growth, metastasis, drug efficacy, and prognosis.
Purpose: To compare clinical, immunohistochemical (IHC), and gene expression models of prognosis applicable to formalin-fixed, paraffin-embedded blocks in a large series of estrogen receptor (ER)-positive breast cancers from patients uniformly treated with adjuvant tamoxifen.Experimental Design: Quantitative real-time reverse transcription-PCR (qRT-PCR) assays for 50 genes identifying intrinsic breast cancer subtypes were completed on 786 specimens linked to clinical (median follow-up, 11.7 years) and IHC [ER, progesterone receptor (PR), HER2, and Ki67] data. Performance of predefined intrinsic subtype and risk-of-relapse scores was assessed using multivariable Cox models and Kaplan-Meier analysis. Harrell's C-index was used to compare fixed models trained in independent data sets, including proliferation signatures.Results: Despite clinical ER positivity, 10% of cases were assigned to nonluminal subtypes. qRT-PCR signatures for proliferation genes gave more prognostic information than clinical assays for hormone receptors or Ki67. In Cox models incorporating standard prognostic variables, hazard ratios for breast cancer disease-specific survival over the first 5 years of follow-up, relative to the most common luminal A subtype, are 1.99 [95% confidence interval (CI), 1.09-3.64] for luminal B, 3.65 (95% CI, 1.64-8.16) for HER2-enriched subtype, and 17.71 (95% CI, 1.71-183.33) for the basal-like subtype. For node-negative disease, PAM50 qRT-PCR-based risk assignment weighted for tumor size and proliferation identifies a group with >95% 10-year survival without chemotherapy. In node-positive disease, PAM50-based prognostic models were also superior.Conclusion: The PAM50 gene expression test for intrinsic biological subtype can be applied to large series of formalin-fixed, paraffin-embedded breast cancers, and gives more prognostic information than clinical factors and IHC using standard cut points. Clin Cancer Res; 16(21); 5222-32. ©2010 AACR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.