A comprehensive study of the effects of carbohydrate doping on the superconductivity of MgB 2 has been conducted. In accordance with the dual reaction model, more carbon substitution is achieved at lower sintering temperature. As the sintering temperature is lowered, lattice disorder is increased. Disorder is an important factor determining the transition temperature for the samples studied in this work, as evidenced from the correlations among the lattice strain, the resistivity, and the transition temperature. It is further shown that the increased critical current density in the high field region can be understood by a recentlyproposed percolation model [M. Eisterer et al., Phys. Rev. Lett. 90, 247002 (2003)]. For the critical current density analysis, the upper critical field is estimated from a correlation that was reported in a recent review article [M. Eisterer, Supercond. Sci. Technol. 20, R47 (2007)], where a sharp increase in the upper critical field by doping is mainly due to an increase in lattice disorder or impurity scattering. On the other hand, it is shown that the observed reduction in self-field critical current density is related to the reduction in the pinning force density by carbohydrate doping. KeywordsCorrelation, between, doping, induced, disorder, superconducting, properties, carbohydrate, doped, MgB2 Disciplines Engineering | Physical Sciences and Mathematics Publication DetailsKim, J, Dou, SX, Oh, S, Jercinovic, M, Babic, E, Nakane, T & Kumakura, H (2008), Correlation between doping induced disorder and superconducting properties in carbohydrate doped MgB2, Journal of Applied Physics, 104(6), 063911-1-063911-5. AuthorsJung Ho Kim, S X. Dou, Sangjun Oh, M Jercinovic, E Babic, T Nakane, and Hiroaki Kumakura A comprehensive study of the effects of carbohydrate doping on the superconductivity of MgB 2 has been conducted. In accordance with the dual reaction model, more carbon substitution is achieved at lower sintering temperature. As the sintering temperature is lowered, lattice disorder is increased. Disorder is an important factor determining the transition temperature for the samples studied in this work, as evidenced from the correlations among the lattice strain, the resistivity, and the transition temperature. It is further shown that the increased critical current density in the high field region can be understood by a recently-proposed percolation model ͓M. Eisterer et al., Phys. Rev. Lett. 90, 247002 ͑2003͔͒. For the critical current density analysis, the upper critical field is estimated from a correlation that was reported in a recent review article ͓M. Eisterer, Supercond. Sci. Technol. 20, R47 ͑2007͔͒, where a sharp increase in the upper critical field by doping is mainly due to an increase in lattice disorder or impurity scattering. On the other hand, it is shown that the observed reduction in self-field critical current density is related to the reduction in the pinning force density by carbohydrate doping.
Abstract. We report on the formation of Ge/Si quantum dots with core/shell structure that are arranged in a three-dimensional body centered tetragonal quantum dot lattice in an amorphous alumina matrix. The material is prepared by magnetron sputtering deposition of Al 2 O 3 /Ge/Si multilayer. The inversion of Ge and Si in the deposition sequence results in the formation of thin Si/Ge layers instead of the dots. Both materials show an atomically sharp interface between the Ge and Si parts of the dots and layers. They have an amorphous internal structure that can be crystallized by an annealing treatment. The light absorption properties of these complex materials are significantly different compared to films that form quantum dot lattices of the pure Ge, Si or a solid solution of GeSi. They show a strong narrow absorption peak that characterizes a type II confinement in accordance with theoretical predictions. The prepared materials are promising for application in quantum dot solar cells.
In this paper we report the results of an extended study of the effect of sugar doping on the structural and electromagnetic properties of MgB2 superconductors. High values of the upper critical field (Bc2) of 36 T and the irreversibility field (Birr) of 27 T have been estimated at the temperature of 5 K in a bulk MgB2 sample with the addition of 10 wt% of sugar. The critical current density (Jc(Ba)) of sugar-doped samples has been significantly improved in the high field region. The value of transport Jc has reached as high as 108 A m−2 at 10 T and 5 K for Fe-sheathed sugar-doped MgB2 wire. The analysis of the pinning mechanism in the samples investigated indicated that dominant vortex pinning occurs on the surface type of pinning defects, such as grain boundaries, dislocations, stacking faults etc, for both pure and doped MgB2. In sugar-doped samples, pinning is governed by numerous crystal lattice defects, which appear in MgB2 grains as a result of crystal lattice distortion caused by carbon substitution for boron and nano-inclusions. The drastically improved superconducting properties of sugar-doped samples are also attributed to the highly homogeneous distribution and enhanced reactivity of this dopant with host Mg and B powders. The results of this work suggest that sugar is the optimal source of carbon for doping MgB2 superconductor, especially for application at high magnetic fields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.