Focal demyelinated plaques in white matter, which are the hallmark of multiple sclerosis pathology, only partially explain the patient's clinical deficits. We thus analysed global brain pathology in multiple sclerosis, focusing on the normal-appearing white matter (NAWM) and the cortex. Autopsy tissue from 52 multiple sclerosis patients (acute, relapsing-remitting, primary and secondary progressive multiple sclerosis) and from 30 controls was analysed using quantitative morphological techniques. New and active focal inflammatory demyelinating lesions in the white matter were mainly present in patients with acute and relapsing multiple sclerosis, while diffuse injury of the NAWM and cortical demyelination were characteristic hallmarks of primary and secondary progressive multiple sclerosis. Cortical demyelination and injury of the NAWM, reflected by diffuse axonal injury with profound microglia activation, occurred on the background of a global inflammatory response in the whole brain and meninges. There was only a marginal correlation between focal lesion load in the white matter and diffuse white matter injury, or cortical pathology, respectively. Our data suggest that multiple sclerosis starts as a focal inflammatory disease of the CNS, which gives rise to circumscribed demyelinated plaques in the white matter. With chronicity, diffuse inflammation accumulates throughout the whole brain, and is associated with slowly progressive axonal injury in the NAWM and cortical demyelination.
The sensation of pain protects the body from serious injury. Using exome sequencing, we identified a specific de novo missense mutation in SCN11A in individuals with the congenital inability to experience pain who suffer from recurrent tissue damage and severe mutilations. Heterozygous knock-in mice carrying the orthologous mutation showed reduced sensitivity to pain and self-inflicted tissue lesions, recapitulating aspects of the human phenotype. SCN11A encodes Nav1.9, a voltage-gated sodium ion channel that is primarily expressed in nociceptors, which function as key relay stations for the electrical transmission of pain signals from the periphery to the central nervous system. Mutant Nav1.9 channels displayed excessive activity at resting voltages, causing sustained depolarization of nociceptors, impaired generation of action potentials and aberrant synaptic transmission. The gain-of-function mechanism that underlies this channelopathy suggests an alternative way to modulate pain perception.
We identified mutations in PIGT as the cause of a novel autosomal recessive intellectual disability syndrome. Our results demonstrate a new pathogenic mechanism in the GPI anchor pathway and expand the clinical spectrum of disorders belonging to the group of GPI anchor deficiencies.
Volume 129 Number 3 March 2019 conjugation of L-serine and palmitoyl-CoA, the rate-limiting step catalyzed by serine palmitoyltransferase (SPT). The immediate product 3-keto-sphinganine is reduced to sphinganine (SA), which is then N-acylated to dihydroceramide (dhCer) by 1 of 6 ceramide synthase isoforms (CerS1-6) (4). In the final step, dhCer is converted to ceramide by the insertion of a Δ4,5 trans (Δ4E) double bond into the SA backbone. This final conversion is catalyzed by the Δ4-dihydroceramide desaturase DEGS1 (5). On the catabolic side, ceramides are deacylated by ceramidases to form sphingosine (SO), which can be either recycled back to ceramides (sal-BACKGROUND. Sphingolipids are important components of cellular membranes and functionally associated with fundamental processes such as cell differentiation, neuronal signaling, and myelin sheath formation. Defects in the synthesis or degradation of sphingolipids leads to various neurological pathologies; however, the entire spectrum of sphingolipid metabolism disorders remains elusive. METHODS.A combined approach of genomics and lipidomics was applied to identify and characterize a human sphingolipid metabolism disorder. RESULTS.By whole-exome sequencing in a patient with a multisystem neurological disorder of both the central and peripheral nervous systems, we identified a homozygous p.Ala280Val variant in DEGS1, which catalyzes the last step in the ceramide synthesis pathway. The blood sphingolipid profile in the patient showed a significant increase in dihydro sphingolipid species that was further recapitulated in patient-derived fibroblasts, in CRISPR/Cas9-derived DEGS1-knockout cells, and by pharmacological inhibition of DEGS1. The enzymatic activity in patient fibroblasts was reduced by 80% compared with wild-type cells, which was in line with a reduced expression of mutant DEGS1 protein. Moreover, an atypical and potentially neurotoxic sphingosine isomer was identified in patient plasma and in cells expressing mutant DEGS1. CONCLUSION.We report DEGS1 dysfunction as the cause of a sphingolipid disorder with hypomyelination and degeneration of both the central and peripheral nervous systems.(OMIM #617575) (19-21), but also with axonal peripheral neuropathy without renal or adrenal deficiencies (22).Here, we identify DEGS1 dysfunction as the cause of an SL disorder with leukodystrophy and hypomyelination of the peripheral nervous system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.