BackgroundGiven the pathophysiological key role of the host response to an infection rather than the infection per se, an ideal therapeutic strategy would also target this response. This study was designed to demonstrate safety and feasibility of early therapeutic plasma exchange (TPE) in severely ill individuals with septic shock.MethodsThis was a prospective single center, open-label, nonrandomized pilot study enrolling 20 patients with early septic shock (onset < 12 h) requiring high doses of norepinephrine (NE; > 0.4 μg/kg/min) out of 231 screened septic patients. Clinical and biochemical data were obtained before and after TPE. Plasma samples were taken for ex-vivo stimulation of human umbilical vein endothelial cells (HUVECs) to analyze barrier function (immunocytochemistry and transendothelial electrical resistance (TER)). Cytokines were measured by cytometric bead array (CBA) and enzyme-linked immunosorbent assays (ELISAs). An immediate response was defined as > 20% NE reduction from baseline to the end of TPE.ResultsTPE was well tolerated without the occurrence of any adverse events and was associated with a rapid reduction in NE (0.82 (0.61–1.17) vs. 0.56 (0.41–0.78) μg/kg/min, p = 0.002) to maintain mean arterial pressure (MAP) above 65 mmHg. The observed 28-day mortality was 65%. Key proinflammatory cytokines and permeability factors (e.g., interleukin (IL)-6, IL-1b, and angiopoietin-2) were significantly reduced after TPE, while the protective antipermeability factor angiopoietin-1 was not changed. Ex-vivo stimulation of HUVECs with plasma obtained before TPE induced substantial cellular hyperpermeability, which was completely abolished with plasma obtained after TPE.ConclusionsInclusion of early septic shock patients with high doses of vasopressors was feasible and TPE was safe. Rapid hemodynamic improvement and favorable changes in the cytokine profile in patients with septic shock were observed. It has yet to be determined whether early TPE also improves outcomes in this patient cohort. An appropriately powered multicenter randomized controlled trial is desirable.Trial registrationClinicaltrials.gov, NCT03065751. Retrospectively registered on 28 February 2017.Electronic supplementary materialThe online version of this article (10.1186/s13054-018-2220-9) contains supplementary material, which is available to authorized users.
Background: Elucidating the role of T cell responses in COVID-19 is of utmost importance to understand the clearance of SARS-CoV-2 infection. Methods: 30 hospitalized COVID-19 patients and 60 age-and gender-matched healthy controls (HC) participated in this study. We used two comprehensive 11-colour flow cytometric panels conforming to Good Laboratory Practice and approved for clinical diagnostics. Findings: Absolute numbers of lymphocyte subsets were differentially decreased in COVID-19 patients according to clinical severity. In severe disease (SD) patients, all lymphocyte subsets were reduced, whilst in mild disease (MD) NK, NKT and gd T cells were at the level of HC. Additionally, we provide evidence of T cell activation in MD but not SD, when compared to HC. Follow up samples revealed a marked increase in effector T cells and memory subsets in convalescing but not in non-convalescing patients. Interpretation: Our data suggest that activation and expansion of innate and adaptive lymphocytes play a major role in COVID-19. Additionally, recovery is associated with formation of T cell memory as suggested by the missing formation of effector and central memory T cells in SD but not in MD. Understanding T cell-responses in the context of clinical severity might serve as foundation to overcome the lack of effective anti-viral immune response in severely affected COVID-19 patients and can offer prognostic value as biomarker for disease outcome and control.
Background Comprehensive data on the cerebrospinal fluid (CSF) profile in patients with COVID-19 and neurological involvement from large-scale multicenter studies are missing so far. Objective To analyze systematically the CSF profile in COVID-19. Methods Retrospective analysis of 150 lumbar punctures in 127 patients with PCR-proven COVID-19 and neurological symptoms seen at 17 European university centers Results The most frequent pathological finding was blood-CSF barrier (BCB) dysfunction (median QAlb 11.4 [6.72–50.8]), which was present in 58/116 (50%) samples from patients without pre-/coexisting CNS diseases (group I). QAlb remained elevated > 14d (47.6%) and even > 30d (55.6%) after neurological onset. CSF total protein was elevated in 54/118 (45.8%) samples (median 65.35 mg/dl [45.3–240.4]) and strongly correlated with QAlb. The CSF white cell count (WCC) was increased in 14/128 (11%) samples (mostly lympho-monocytic; median 10 cells/µl, > 100 in only 4). An albuminocytological dissociation (ACD) was found in 43/115 (37.4%) samples. CSF l-lactate was increased in 26/109 (24%; median 3.04 mmol/l [2.2–4]). CSF-IgG was elevated in 50/100 (50%), but was of peripheral origin, since QIgG was normal in almost all cases, as were QIgA and QIgM. In 58/103 samples (56%) pattern 4 oligoclonal bands (OCB) compatible with systemic inflammation were present, while CSF-restricted OCB were found in only 2/103 (1.9%). SARS-CoV-2-CSF-PCR was negative in 76/76 samples. Routine CSF findings were normal in 35%. Cytokine levels were frequently elevated in the CSF (often associated with BCB dysfunction) and serum, partly remaining positive at high levels for weeks/months (939 tests). Of note, a positive SARS-CoV-2-IgG-antibody index (AI) was found in 2/19 (10.5%) patients which was associated with unusually high WCC in both of them and a strongly increased interleukin-6 (IL-6) index in one (not tested in the other). Anti-neuronal/anti-glial autoantibodies were mostly absent in the CSF and serum (1509 tests). In samples from patients with pre-/coexisting CNS disorders (group II [N = 19]; including multiple sclerosis, JC-virus-associated immune reconstitution inflammatory syndrome, HSV/VZV encephalitis/meningitis, CNS lymphoma, anti-Yo syndrome, subarachnoid hemorrhage), CSF findings were mostly representative of the respective disease. Conclusions The CSF profile in COVID-19 with neurological symptoms is mainly characterized by BCB disruption in the absence of intrathecal inflammation, compatible with cerebrospinal endotheliopathy. Persistent BCB dysfunction and elevated cytokine levels may contribute to both acute symptoms and ‘long COVID’. Direct infection of the CNS with SARS-CoV-2, if occurring at all, seems to be rare. Broad differential diagnostic considerations are recommended to avoid misinterpretation of treatable coexisting neurological disorders as complications of COVID-19.
Repositioning of the global epicentre of non-optimal cholesterol NCD Risk Factor Collaboration (NCD-RisC)* High blood cholesterol is typically considered a feature of wealthy western countries 1,2. However, dietary and behavioural determinants of blood cholesterol are changing rapidly throughout the world 3 and countries are using lipid-lowering medications at varying rates. These changes can have distinct effects on the levels of high-density lipoprotein (HDL) cholesterol and non-HDL cholesterol, which have different effects on human health 4,5. However, the trends of HDL and non-HDL cholesterol levels over time have not been previously reported in a global analysis. Here we pooled 1,127 population-based studies that measured blood lipids in 102.6 million individuals aged 18 years and older to estimate trends from 1980 to 2018 in mean total, non-HDL and HDL cholesterol levels for 200 countries. Globally, there was little change in total or non-HDL cholesterol from 1980 to 2018. This was a net effect of increases in low-and middle-income countries, especially in east and southeast Asia, and decreases in high-income western countries, especially those in northwestern Europe, and in central and eastern Europe. As a result, countries with the highest level of non-HDL cholesterol-which is a marker of cardiovascular riskchanged from those in western Europe such as Belgium,
In light of the present therapeutic situation in COVID-19, any measure to improve course and outcome of seriously affected individuals is of utmost importance. We recap here evidence that supports the use of human recombinant erythropoietin (EPO) for ameliorating course and outcome of seriously ill COVID-19 patients. This brief expert review grounds on available subject-relevant literature searched until May 14, 2020, including Medline, Google Scholar, and preprint servers. We delineate in brief sections, each introduced by a summary of respective COVID-19 references, how EPO may target a number of the gravest sequelae of these patients. EPO is expected to: (1) improve respiration at several levels including lung, brainstem, spinal cord and respiratory muscles; (2) counteract overshooting inflammation caused by cytokine storm/ inflammasome; (3) act neuroprotective and neuroregenerative in brain and peripheral nervous system. Based on this accumulating experimental and clinical evidence, we finally provide the research design for a double-blind placebo-controlled randomized clinical trial including severely affected patients, which is planned to start shortly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.